This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Lipid metabolism is a major human health concern, with much attention focused on inflammation and lipid homeostatis of lipids linked to low and high density lipoprotein (LDL, HDL). Many proteins that are associated with LDL and HDL particles play a critical role in these lipid pathways. The plasma form of platelet activating factor acetylhydrolase (pPAFAH) functions on the surface of LDL particles by reducing levels of the signaling molecule platelet activating factor (PAF) as a general anti-inflammatory scavenger, and is linked to anaphylactic shock, asthma and allergic reactions. As a LDL-associated protein with no known homologues, pPAFAH is a worthy structural target. In addition to its role to reduce PAF levels, it has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as oxidized lipids of LDL particles. A molecular understanding of the physiological reactions catalyzed by pPAFAH requires structural models of the enzyme interacting with its substrates PAF and oxidized phospholipids. We will elucidate the relationship between structure and interfacial enzyme function for pPAFAH via 4 specific aims: (i) The high-resolution crystal structure of pPAFAH will be solved. The use of detergents and amphiphilic molecules will be explored to provide higher resolution structures, as well as functionally more relevant structures. (ii) Inhibitors of pPAFAH will be explored and developed via structural and kinetic characterization to elucidate in vivo physiological functions. (iii) Combining structure with interfacial kinetic studies, we will further elucidate the physiological roles of pPAFAH. Insights from inhibition and structural studies will help develop an atomic resolution mechanism of the enzyme. Enzyme-ligand complexes will be pursued that further elucidate the enzyme mechanism. (iv) The physiologically relevant reaction of pPAFAH with organophosphate (OP) compounds will be explored, including the possible use of the LDL-associated enzyme as a bioscavenger target of OP neurotoxins.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015588-07
Application #
7381191
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2006-06-01
Project End
2007-05-31
Budget Start
2006-06-01
Budget End
2007-05-31
Support Year
7
Fiscal Year
2006
Total Cost
$240,981
Indirect Cost
Name
University of Delaware
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Li, Linqing; Stiadle, Jeanna M; Levendoski, Elizabeth E et al. (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106:2229-2242
Bathala, Pradeepthi; Fereshteh, Zeinab; Li, Kun et al. (2018) Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility. Mol Hum Reprod 24:143-157
Olli, Kristine E; Li, Kun; Galileo, Deni S et al. (2018) Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J Cell Physiol 233:11-22
Wu, Kathie Z; Li, Kun; Galileo, Deni S et al. (2017) Junctional adhesion molecule A: expression in the murine epididymal tract and accessory organs and acquisition by maturing sperm. Mol Hum Reprod 23:132-140
Li, Linqing; Stiadle, Jeanna M; Lau, Hang K et al. (2016) Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 108:91-110
Martin-DeLeon, Patricia Anastasia (2016) Uterosomes: Exosomal cargo during the estrus cycle and interaction with sperm. Front Biosci (Schol Ed) 8:115-22
Al-Dossary, Amal A; Bathala, Pradeepthi; Caplan, Jeffrey L et al. (2015) Oviductosome-Sperm Membrane Interaction in Cargo Delivery: DETECTION OF FUSION AND UNDERLYING MOLECULAR PLAYERS USING THREE-DIMENSIONAL SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY (SR-SIM). J Biol Chem 290:17710-23
Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F et al. (2015) Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II. Biochim Biophys Acta 1854:469-75
Andrews, Rachel E; Galileo, Deni S; Martin-DeLeon, Patricia A (2015) Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase. Mol Hum Reprod 21:832-43
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep (2015) Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics. Langmuir 31:6615-31

Showing the most recent 10 out of 153 publications