This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The long-term goal of our research program is to define the role of Myc in regulating angiogenesis during tumorigenesis and development. Our laboratory has previously demonstrated that c-Myc can act as a master regulator of both pro- and anti-angiogenic factors during embryonic development and tumor formation. Loss of c-Myc results in hematopoietic and vascular defects. Moreover, both c-Myc- and N-Myc-deficient mice display cardiovascular defects, yet to date these defects have not been well characterized. We will attempt to analyze these defects through several different experimental approaches. First, we will use conditional knockout mice to examine the effect of Myc loss in the heart (specifically in cardiomyocytes) during embryonic development and following birth. Either whole hearts (in vivo and in vitro) or cells (in vitro) can then be stressed and cellular responses can be measured both physically and biochemically. Secondly, we will generate a transgenic mouse that expresses c-Myc specifically in fibroblasts (using the DDR2 promoter) and examine the effect of Myc activation on heart development, again in the developing embryo and in the adult animal. Finally, we will examine the exact mechanism(s) of how Myc regulates angiogenic factors (both positively and negatively) and what role this plays in development of the cardiovascular system.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR016434-06
Application #
7381242
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
6
Fiscal Year
2006
Total Cost
$89,759
Indirect Cost
Name
Medical University of South Carolina
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Soiberman, Uri; Foster, James W; Jun, Albert S et al. (2017) Pathophysiology of Keratoconus: What Do We Know Today. Open Ophthalmol J 11:252-261
Karousou, Evgenia; Misra, Suniti; Ghatak, Shibnath et al. (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 59:3-22
Moreno-Rodriguez, Ricardo A; Krug, Edward L; Reyes, Leticia et al. (2017) Linear array of multi-substrate tracts for simultaneous assessment of cell adhesion, migration, and differentiation. Biotechniques 63:267-274
Liu, Gang; Cooley, Marion A; Jarnicki, Andrew G et al. (2016) Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight 1:
Menon, Vinal; Junor, Lorain; Balhaj, Marwa et al. (2016) A Novel Ex Ovo Banding Technique to Alter Intracardiac Hemodynamics in an Embryonic Chicken System. J Vis Exp :
Dupuis, Loren E; Doucette, Lorna; Rice, A Kittrell et al. (2016) Development of myotendinous-like junctions that anchor cardiac valves requires fibromodulin and lumican. Dev Dyn 245:1029-42
Olsen, T R; Mattix, B; Casco, M et al. (2015) Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomater 13:188-98
Stevens, Shawn M; Brown, LaShardai N; Ezell, Paula C et al. (2015) The Mouse Round-window Approach for Ototoxic Agent Delivery: A Rapid and Reliable Technique for Inducing Cochlear Cell Degeneration. J Vis Exp :
Menon, Vinal; Eberth, John F; Goodwin, Richard L et al. (2015) Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development. J Cardiovasc Dev Dis 2:108-124
Dupuis, Loren E; Berger, Matthew G; Feldman, Samuel et al. (2015) Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly. J Mol Cell Cardiol 84:70-80

Showing the most recent 10 out of 154 publications