This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.One of the goals of the COBRE and the Gene Function Core are to support the Transgenic and Gene Targeting Core facilities that are an essential part of the infrastructure at MUSC. The COBRE support has ensured that high quality personnel are compensated to a level that decreases the potential of their being recruited away. This has given the Transgenic Facility the personnel continuity necessary to establish its record of performing high quality work. The more long-standing Gene Targeting Facility is doing well but still requires our support to maintain its high quality function. With this strong infrastructure we are providing the following services to the COBRE Junior Investigators at no cost to their budgets: a) Generation of mice-transgenic mice are generated by both pronuclear microinjection and homologous recombination in ES cells. b) Mentoring- the initial and additional project leaders have been, and will continue to be, mentored in the varied ways of utilizing transgenic and gene targeted technologies. c) Experimentation- all experiments that generate and/or use transgenic/gene targeted mice have been, and will continue to be, facilitated from concept to completion. d) Generation of viral vectors- this core can generate adenoviruses, retroviruses, and lentiviruses

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016434-08
Application #
7720832
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
8
Fiscal Year
2008
Total Cost
$258,780
Indirect Cost
Name
Medical University of South Carolina
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Soiberman, Uri; Foster, James W; Jun, Albert S et al. (2017) Pathophysiology of Keratoconus: What Do We Know Today. Open Ophthalmol J 11:252-261
Karousou, Evgenia; Misra, Suniti; Ghatak, Shibnath et al. (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 59:3-22
Moreno-Rodriguez, Ricardo A; Krug, Edward L; Reyes, Leticia et al. (2017) Linear array of multi-substrate tracts for simultaneous assessment of cell adhesion, migration, and differentiation. Biotechniques 63:267-274
Liu, Gang; Cooley, Marion A; Jarnicki, Andrew G et al. (2016) Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight 1:
Menon, Vinal; Junor, Lorain; Balhaj, Marwa et al. (2016) A Novel Ex Ovo Banding Technique to Alter Intracardiac Hemodynamics in an Embryonic Chicken System. J Vis Exp :
Dupuis, Loren E; Doucette, Lorna; Rice, A Kittrell et al. (2016) Development of myotendinous-like junctions that anchor cardiac valves requires fibromodulin and lumican. Dev Dyn 245:1029-42
Olsen, T R; Mattix, B; Casco, M et al. (2015) Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomater 13:188-98
Stevens, Shawn M; Brown, LaShardai N; Ezell, Paula C et al. (2015) The Mouse Round-window Approach for Ototoxic Agent Delivery: A Rapid and Reliable Technique for Inducing Cochlear Cell Degeneration. J Vis Exp :
Menon, Vinal; Eberth, John F; Goodwin, Richard L et al. (2015) Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development. J Cardiovasc Dev Dis 2:108-124
Dupuis, Loren E; Berger, Matthew G; Feldman, Samuel et al. (2015) Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly. J Mol Cell Cardiol 84:70-80

Showing the most recent 10 out of 154 publications