This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Autolgous transplantation for myeloma improves survival, but the immunologic mechanisms accounting for this improvement are unknown. Our data indicate that NKG2D+CD8+T cells may be one reason for this benefit. NKG2D, one of four NK activating receptors, has been identified on some CD8+T cells that mediate TCR-independent and non-MHC restricted tumor cell killing. Since the NKG2D receptor recognizes ligands expressed on myeloma cells, these NKG2D+CD8+T cells aggressively kill myeloma cells and provide a unique immunotherapy opportunity. Immune mobilization, using IL-2 and growth factors (i.e. stimulation of hematopoietic cells into the blood that can be used for transplant) expands CD8+T cytotoxic cells that acquire the NKG2D receptor and perform their killing using NKG2D. We have identified an increase number and function of NKG2D+CD8+T cells in vivo early post-transplant. When murine CD8+T cells are transduced with a chimeric NKG2D receptor and injected into myeloma-bearing mice, 100% of the mice survive. We hypothesize that the infusion of immune mobilized cells into myeloma patients as part of the transplanted cells will markedly enhance immune reconstitution, by increasing the number and function of NKG2D+CD8+T cells. These proposed studies will define the presence, function and mechanisms of NK cell activating receptors on recovering CD8+T cells in vivo following transplant. Our long-term hypothesis is that this regimen will improve survival by enhancing early immune recovery following transplantation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016437-09
Application #
7959998
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
9
Fiscal Year
2009
Total Cost
$119,916
Indirect Cost
Name
Dartmouth College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Parker, Zachary M; Pasieka, Tracy Jo; Parker, George A et al. (2016) Immune- and Nonimmune-Compartment-Specific Interferon Responses Are Critical Determinants of Herpes Simplex Virus-Induced Generalized Infections and Acute Liver Failure. J Virol 90:10789-10799
Allegrezza, Michael J; Rutkowski, Melanie R; Stephen, Tom L et al. (2016) Trametinib Drives T-cell-Dependent Control of KRAS-Mutated Tumors by Inhibiting Pathological Myelopoiesis. Cancer Res 76:6253-6265
Rosato, Pamela C; Katzenell, Sarah; Pesola, Jean M et al. (2016) Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency. Virology 497:323-327
O'Connor, Megan A; Vella, Jennifer L; Green, William R (2016) Reciprocal relationship of T regulatory cells and monocytic myeloid-derived suppressor cells in LP-BM5 murine retrovirus-induced immunodeficiency. J Gen Virol 97:509-22
Yeager, Mark P; Pioli, Patricia A; Collins, Jane et al. (2016) Glucocorticoids enhance the in vivo migratory response of human monocytes. Brain Behav Immun 54:86-94
Ball, Michael S; Shipman, Emilie P; Kim, Hyunjung et al. (2016) CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages. PLoS One 11:e0149600
Katzenell, Sarah; Leib, David A (2016) Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons. J Virol 90:4706-4719
Zhao, Hongliang; Verma, Deeptak; Li, Wen et al. (2015) Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo. Chem Biol 22:629-39
Patankar, Yash R; Mabaera, Rodwell; Berwin, Brent (2015) Differential ASC requirements reveal a key role for neutrophils and a noncanonical IL-1? response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 309:L902-13
Parker, Zachary M; Murphy, Aisling A; Leib, David A (2015) Role of the DNA Sensor STING in Protection from Lethal Infection following Corneal and Intracerebral Challenge with Herpes Simplex Virus 1. J Virol 89:11080-91

Showing the most recent 10 out of 129 publications