This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. New blood vessel growth or neovascularization, can be categorized into vasculogenesis and angiogenesis. Vasculogenesis is de novo formation of blood vessels from endothelial progenitor cells (EPS) which differentiate in situ, spread, migrate and coalesce to give rise to a capillary network. In contrast, angiogenesis results from the sprouting of pre-existing endothelial cells. Cell migration, assembly into cords-like structures, formation of vascular lumens and organization into capillary networks are essential steps in the vasculogenic process which are poorly understood. It has been speculated that the development of beiomechanical tension between cells drives the reorganization of cells into cords and capillary like structures. Nonmuscle myosin II is the molecular motor responsible for generation of cellular tension;however, myosin II's role in capillary formation is unknown.
The aim of the proposed research is to define the role of myosin II in vascular morphogenesis. The primary hypothesis underlying the proposed work dictates that myosin II is essential for vascular development. This hypothesis states that activation of myosin II resulting in generation of cellular tension is an absolute requirement for formation of capillary networks. The objectives of this application are: 1) to characterize pulmonary capillary morphogenesis;2) determine the role of nonmuscle myosin II (myosin IIA and IIB) during pulmonary capillary formation and 3) to identify the signaling pathways which activate myosin II at specific stages of capillary formation. Functionally, regulated phosphorylation of myosin II would allow developing capillary networks to react to a variety of physiological signals with graded contractile responses and tension generation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016440-09
Application #
7960379
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
9
Fiscal Year
2009
Total Cost
$173,724
Indirect Cost
Name
West Virginia University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
191510239
City
Morgantown
State
WV
Country
United States
Zip Code
26506
Nichols, Cody E; Shepherd, Danielle L; Hathaway, Quincy A et al. (2018) Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 12:32-48
Shumar, Stephanie A; Kerr, Evan W; Geldenhuys, Werner J et al. (2018) Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J Biol Chem 293:4134-4148
Bedenbaugh, M N; O'Connell, R C; Lopez, J A et al. (2018) Kisspeptin, gonadotrophin-releasing hormone and oestrogen receptor ? colocalise with neuronal nitric oxide synthase neurones in prepubertal female sheep. J Neuroendocrinol 30:
Rodgers, H M; Huffman, V J; Voronina, V A et al. (2018) The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Mech Dev 151:18-29
Brooks, Celine; Snoberger, Aaron; Belcastro, Marycharmain et al. (2018) Archaeal Unfoldase Counteracts Protein Misfolding Retinopathy in Mice. J Neurosci 38:7248-7254
Grisez, Brian T; Ray, Justin J; Bostian, Phillip A et al. (2018) Highly metastatic K7M2 cell line: A novel murine model capable of in vivo imaging via luciferase vector transfection. J Orthop Res :
McCosh, Richard B; Szeligo, Brett M; Bedenbaugh, Michelle N et al. (2017) Evidence That Endogenous Somatostatin Inhibits Episodic, but Not Surge, Secretion of LH in Female Sheep. Endocrinology 158:1827-1837
He, Xiaoqing; Wang, Liying; Riedel, Heimo et al. (2017) Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16:63
Voronkova, Maria A; Luanpitpong, Sudjit; Rojanasakul, Liying Wang et al. (2017) SOX9 Regulates Cancer Stem-Like Properties and Metastatic Potential of Single-Walled Carbon Nanotube-Exposed Cells. Sci Rep 7:11653
Chakraborty, Sreeparna; Castranova, Vincent; Perez, Miriam K et al. (2017) Nanoparticles-induced apoptosis of human airway epithelium is mediated by proNGF/p75NTRsignaling. J Toxicol Environ Health A 80:53-68

Showing the most recent 10 out of 306 publications