This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal of this proposal is to define the role of pro-metastatic protein HEF1 in breast cancer metastasis to mouse orthotopic models. Development of xenograft models is justified based on our need to identify the steps of metastasis affected by HEF1 to develop therapeutic strategies for advanced stage breast cancer patients where HEF1 is commonly overexpressed. We have established several highly metastatic breast cancer cell lines with regulated expression of HEF1 and shRNA against HEF1 to directly test its action in promoting cell migration, invasion and proliferation in mouse tumor models. Subsequently, we will define how HEF1 downstream targets, Aurora-A and HDAC6, affect the regulation of mitotic progression and invasion of metastatic breast cancer cells.
In Aim 1, we will assess the consequences of HEF1 depletion/or overexpression in metastatic breast cancer cells in vivo, by injecting HEF1 -manipulated tumor cells into the mammary fat pads of SCID mice. We will follow tumor growth, dissemination, and distant sites colonization steps using non-invasive multimodal imaging techniques.
In Aim 2 we will assess the role of HEF1 activated proteins AurA and HDAC6 in metastasis and evaluate efficacy of AurA and HDAC6 inhibitors currently in clinical trials for metastatic breast cancer treatment based on the expression of HEF1 in the tumor cells. This analysis will enable us to determine the impact of HEF1 expression at each stage of metastasis, define the role of AurA and HDAC6 in HEF1-driven processes, and develop the mechanistic rationale for future drug development.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016440-10
Application #
8167962
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
10
Fiscal Year
2010
Total Cost
$219,088
Indirect Cost
Name
West Virginia University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
191510239
City
Morgantown
State
WV
Country
United States
Zip Code
26506
Nichols, Cody E; Shepherd, Danielle L; Hathaway, Quincy A et al. (2018) Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 12:32-48
Shumar, Stephanie A; Kerr, Evan W; Geldenhuys, Werner J et al. (2018) Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J Biol Chem 293:4134-4148
Bedenbaugh, M N; O'Connell, R C; Lopez, J A et al. (2018) Kisspeptin, gonadotrophin-releasing hormone and oestrogen receptor ? colocalise with neuronal nitric oxide synthase neurones in prepubertal female sheep. J Neuroendocrinol 30:
Rodgers, H M; Huffman, V J; Voronina, V A et al. (2018) The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Mech Dev 151:18-29
Brooks, Celine; Snoberger, Aaron; Belcastro, Marycharmain et al. (2018) Archaeal Unfoldase Counteracts Protein Misfolding Retinopathy in Mice. J Neurosci 38:7248-7254
Grisez, Brian T; Ray, Justin J; Bostian, Phillip A et al. (2018) Highly metastatic K7M2 cell line: A novel murine model capable of in vivo imaging via luciferase vector transfection. J Orthop Res :
McCosh, Richard B; Szeligo, Brett M; Bedenbaugh, Michelle N et al. (2017) Evidence That Endogenous Somatostatin Inhibits Episodic, but Not Surge, Secretion of LH in Female Sheep. Endocrinology 158:1827-1837
He, Xiaoqing; Wang, Liying; Riedel, Heimo et al. (2017) Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16:63
Voronkova, Maria A; Luanpitpong, Sudjit; Rojanasakul, Liying Wang et al. (2017) SOX9 Regulates Cancer Stem-Like Properties and Metastatic Potential of Single-Walled Carbon Nanotube-Exposed Cells. Sci Rep 7:11653
Chakraborty, Sreeparna; Castranova, Vincent; Perez, Miriam K et al. (2017) Nanoparticles-induced apoptosis of human airway epithelium is mediated by proNGF/p75NTRsignaling. J Toxicol Environ Health A 80:53-68

Showing the most recent 10 out of 306 publications