This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Despite advances in antimicrobial chemotherapy and supportive care, the mortality and morbidity associated with E. coli meningitis remain significant due to incomplete understanding of the pathogenesis of this disease. Escherichia coli K1 is the major cause of neonatal Gram-negative bacterial meningitis and its invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for its penetration of blood-brain barrier (BBB) in vivo and in vitro. My colleagues and I have shown that cytotoxic necrotizing factor 1 (CNF1) is a major bacterial determinant contributing to E. coli K1 invasion of HBMEC and that laminin receptor (LR) is the cellular receptor for CNF1, which induces host cell actin cytoskeleton rearrangements through activation of RhoGTPases. Further characterization of CNF1-LR interaction suggests that LR plays essential role in CNF1-mediated E. coli K1 internalization into HBMEC, but it is incompletely understood how CNF1-LR interaction modulates actin cytoskeleton rearrangements in HBMEC, resulting in E. coli K1 invasion of HBMEC. Therefore, I hypothesize that E. coli K1 CNF1 interaction with its receptor (LR) triggers downstream signal transduction pathways responsible for actin cytoskeleton rearrangements and, in turn, E. coli K1 entry into HBMEC.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016443-09
Application #
7720546
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
9
Fiscal Year
2008
Total Cost
$129,263
Indirect Cost
Name
University of Kansas
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
He, Chenchen; Duan, Shaofeng; Dong, Liang et al. (2017) Characterization of a novel p110?-specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate 77:1187-1198
Li, Jiaqin; Wehmeyer, Graham; Lovell, Scott et al. (2016) 1.65?Å resolution structure of the AraC-family transcriptional activator ToxT from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun 72:726-31
Ponnurangam, Sivapriya; Dandawate, Prasad R; Dhar, Animesh et al. (2016) Quinomycin A targets Notch signaling pathway in pancreatic cancer stem cells. Oncotarget 7:3217-32
Freitas, Natalia; Lukash, Tetyana; Dudek, Megan et al. (2015) Capacity of a natural strain of woodchuck hepatitis virus, WHVNY, to induce acute infection in naive adult woodchucks. Virus Res 205:12-21
Kumaraswamy, E; Wendt, K L; Augustine, L A et al. (2015) BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene 34:4333-46
Freitas, Natalia; Abe, Kenji; Cunha, Celso et al. (2014) Support of the infectivity of hepatitis delta virus particles by the envelope proteins of different genotypes of hepatitis B virus. J Virol 88:6255-67
Tang, Yuzhe; Chen, Ruibao; Huang, Yan et al. (2014) Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells. Mol Cancer Ther 13:1526-36
Freitas, Natalia; Cunha, Celso; Menne, Stephan et al. (2014) Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles. J Virol 88:5742-54
Grogan, Patrick T; Sarkaria, Jann N; Timmermann, Barbara N et al. (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604-17
Alhakamy, Nabil A; Nigatu, Adane S; Berkland, Cory J et al. (2013) Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 4:741-57

Showing the most recent 10 out of 174 publications