This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Enterohemorrhagic E. coli (EHEC) O157:H7 contributes greatly to the enormous economic and health burden of food borne disease. The mechanisms by which EHEC Type III Secretion System (T3S) effector proteins modulate host signaling pathways are incompletely characterized. This project will be significant because it will define the mechanism by which the EHEC effector proteins NleH1 and NleH2 disrupt the normal host innate immune response to bacterial infection. The central hypothesis for the proposed research is that NleH proteins bind to the NF-kB subunit RPS3 to disrupt specific host transcriptional responses to bacterial infection. We will test our central hypothesis and accomplish the overall objective of this application by pursuing the following specific aims:
Aim 1. Map the NleH-Rps3 binding domains. Our working hypothesis is that NleH1 and NleH2 bind the mammalian non-Rel NF-kB subunit RPS3 to subvert its normal function.
Aim 2. Quantify the influence of NleH1/NleH2 translocation on host transcription. Our working hypothesis is that NleH1 represses NF-kB-dependent host transcription, whereas NleH2 stimulates NF-kB.
Aim 3. Measure the contribution of NleH1/NleH2 to bacterial virulence in animal models of attaching/effacing pathogens. Our working hypothesis is that NleH1/NleH2 promote bacterial transmission by maintaining an optimal balance between bacterial colonization vs. host inflammatory responses. The proposed research is innovative because it will test the hypothesis that translocated bacterial protein kinases subvert the host innate response to infection by disrupting a novel molecular specifier of selected host transcriptional responses to external stimuli.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016443-10
Application #
7959701
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
10
Fiscal Year
2009
Total Cost
$139,472
Indirect Cost
Name
University of Kansas
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
He, Chenchen; Duan, Shaofeng; Dong, Liang et al. (2017) Characterization of a novel p110?-specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate 77:1187-1198
Li, Jiaqin; Wehmeyer, Graham; Lovell, Scott et al. (2016) 1.65?Å resolution structure of the AraC-family transcriptional activator ToxT from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun 72:726-31
Ponnurangam, Sivapriya; Dandawate, Prasad R; Dhar, Animesh et al. (2016) Quinomycin A targets Notch signaling pathway in pancreatic cancer stem cells. Oncotarget 7:3217-32
Freitas, Natalia; Lukash, Tetyana; Dudek, Megan et al. (2015) Capacity of a natural strain of woodchuck hepatitis virus, WHVNY, to induce acute infection in naive adult woodchucks. Virus Res 205:12-21
Kumaraswamy, E; Wendt, K L; Augustine, L A et al. (2015) BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene 34:4333-46
Freitas, Natalia; Abe, Kenji; Cunha, Celso et al. (2014) Support of the infectivity of hepatitis delta virus particles by the envelope proteins of different genotypes of hepatitis B virus. J Virol 88:6255-67
Tang, Yuzhe; Chen, Ruibao; Huang, Yan et al. (2014) Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells. Mol Cancer Ther 13:1526-36
Freitas, Natalia; Cunha, Celso; Menne, Stephan et al. (2014) Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles. J Virol 88:5742-54
Grogan, Patrick T; Sarkaria, Jann N; Timmermann, Barbara N et al. (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604-17
Alhakamy, Nabil A; Nigatu, Adane S; Berkland, Cory J et al. (2013) Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 4:741-57

Showing the most recent 10 out of 174 publications