This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In this COBRE II grant we aim to develop multidisciplinary researchers in the field of osteoarthritis (OA), from the lab bench to the clinic, with a unique focus on mentoring Women In Science and Engineering (WISE). In this proposal, each of the five projects is lead by a women faculty member. Women faculty in science, and especially engineering, are under-represented. At the University of Delaware, women make up 17% of the faculty of science and 10% of the faculty in engineering. Delaware is not unique in this regard. National averages show similar trends (Nelson, 2005). Thus, our aim is to provide a forum for mentoring and promoting women faculty working in the field of arthritis research. This COBRE II grant, as is COBRE I grant, is administered through our Center for Biomedical Engineering Research (CBER) at the University of Delaware. CBER has been in existence since the early 1990's and provides a forum for researchers in different departments to work together on mulitidisciplinary projects related to translational medicine using biomedical engineering tools. Without exception, all of the research grants through the center (which are mostly R01s) have faculty from at least two colleges working together on multidisciplinary projects that tie together both basic research and clinical treatment. The scientific goal of this COBRE II grant is to create the infrastructure and expertise base to address the mechanisms of OA, as well as its prevention and treatment. The uniqueness of the approach to be employed by our center will be the examination of OA from the integrated perspectives of tissue mechanics, biomechanics, physical therapy and clinical intervention. A foundation for this has been laid by our initial COBRE I grant. In our proposed work, we will build upon the distinctive organization of CBER and the collaborative projects described in this application. In addition to the integration provided by the overarching research aims of the Center, as mentioned above, we aim to establish a core facility for mentoring women in science and engineering. We also aim to continue and expand our instrumentation core in the area of biomedical imaging. Multiple projects benefit from the core facilities provided by the Center. We also encourage other faculty at the University that are not directly involved in the Center to make use of these cores, and will provide mentoring, technical staff and training to make such benefits more accessible.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016458-09
Application #
8167631
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2010-06-01
Project End
2011-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
9
Fiscal Year
2010
Total Cost
$869,491
Indirect Cost
Name
University of Delaware
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Wellsandt, Elizabeth; Khandha, Ashutosh; Manal, Kurt et al. (2017) Predictors of knee joint loading after anterior cruciate ligament reconstruction. J Orthop Res 35:651-656
Pozzi, Federico; Marmon, Adam R; Snyder-Mackler, Lynn et al. (2016) Lower leg compensatory strategies during performance of a step up and over task in patient six-months after total knee arthroplasty. Gait Posture 49:41-46
Moore, A C; DeLucca, J F; Elliott, D M et al. (2016) Quantifying Cartilage Contact Modulus, Tension Modulus, and Permeability With Hertzian Biphasic Creep. J Tribol 138:0414051-414057
Rehmann, Matthew S; Luna, Jesus I; Maverakis, Emanual et al. (2016) Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation. J Biomed Mater Res A 104:1162-74
Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam et al. (2015) Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task. Gait Posture 41:676-82
Zimmerman, B K; Bonnevie, E D; Park, M et al. (2015) Role of interstitial fluid pressurization in TMJ lubrication. J Dent Res 94:85-92
Moore, A C; Zimmerman, B K; Chen, X et al. (2015) Experimental characterization of biphasic materials using rate-controlled Hertzian indentation. Tribol Int 89:2-8
Moore, A C; Burris, D L (2015) Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis. Osteoarthritis Cartilage 23:161-9
Pozzi, Federico; Snyder-Mackler, Lynn; Zeni Jr, Joseph (2015) Relationship between biomechanical asymmetries during a step up and over task and stair climbing after total knee arthroplasty. Clin Biomech (Bristol, Avon) 30:78-85
Lowe, Dylan A; Lepori-Bui, Nadia; Fomin, Peter V et al. (2014) Deficiency in perlecan/HSPG2 during bone development enhances osteogenesis and decreases quality of adult bone in mice. Calcif Tissue Int 95:29-38

Showing the most recent 10 out of 133 publications