This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The theme of the College of Charleston proposal is Molecular Models and Chemical Approaches to Disease Processes. The subproject focuses on support for five target faculty from two departments, Biology and Chemistry/Biochemistry, and for a large number of undergraduate students each year who actively participate in research under the guidance of the Target Faculty. Several of these students have graduated and have gone on to graduate school. Three of the investigators are using Drosophila menalogaster as a model organism in addition to using the mouse. The overall aims of the project are: 1) to enable the Target Faculty to become independent investigators, and 2) to increase the participation of students, especially minority students, in meaningful research experiences, including publication and presentation of their work. The College is providing significant financial support over and above the INBRE award for: a) research release time for Target Faculty, b) key instrumentation, and c) supplies and travel for Target Faculty and students. Each Target Faculty member is expected to develop a career plan that is regularly discussed with his/her mentor and all career plans include the submission of an NIH grant proposal as a key milestone. It is anticipated that by the end of the grant period, the College will be significantly more competitive in biomedical research than it was at the initiation of this award.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016461-07
Application #
7610026
Study Section
Special Emphasis Panel (ZRR1-RI-4 (02))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
7
Fiscal Year
2007
Total Cost
$405,280
Indirect Cost
Name
University of South Carolina at Columbia
Department
Pathology
Type
Schools of Medicine
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Liang, Jiaxin; Chen, Mengqian; Hughes, Daniel et al. (2018) CDK8 Selectively Promotes the Growth of Colon Cancer Metastases in the Liver by Regulating Gene Expression of TIMP3 and Matrix Metalloproteinases. Cancer Res 78:6594-6606
Emetu, Sophia; Troiano, Morgan; Goldmintz, Jacob et al. (2018) Metabolic Labeling and Profiling of Transfer RNAs Using Macroarrays. J Vis Exp :
Oprisan, Sorinel A; Buhusi, Mona; Buhusi, Catalin V (2018) A Population-Based Model of the Temporal Memory in the Hippocampus. Front Neurosci 12:521
Germany, Edward M; Zahayko, Nataliya; Huebsch, Mason L et al. (2018) The AAA ATPase Afg1 preserves mitochondrial fidelity and cellular health by maintaining mitochondrial matrix proteostasis. J Cell Sci 131:
Turner, J Phillip; Chastain, Shelby E; Park, Dongwon et al. (2017) Modulating amyloid-? aggregation: The effects of peptoid side chain placement and chirality. Bioorg Med Chem 25:20-26
Karousou, Evgenia; Misra, Suniti; Ghatak, Shibnath et al. (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 59:3-22
Taylor, Nicholas G; Swenson, Samantha; Harris, Nicholas J et al. (2017) The Assembly Factor Pet117 Couples Heme a Synthase Activity to Cytochrome Oxidase Assembly. J Biol Chem 292:1815-1825
Lamba, Vandana; Sanchez, Enis; Fanning, Lauren Rose et al. (2017) Kemp Eliminase Activity of Ketosteroid Isomerase. Biochemistry 56:582-591
Krout, Danielle; Pramod, Akula Bala; Dahal, Rejwi Acharya et al. (2017) Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochem Pharmacol 142:204-215
Waddell, Grace L; Gilmer, Caroline R; Taylor, Nicholas G et al. (2017) The eukaryotic enzyme Bds1 is an alkyl but not an aryl sulfohydrolase. Biochem Biophys Res Commun 491:382-387

Showing the most recent 10 out of 241 publications