This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Studies of model organisms can result in important insights into the molecular mechanisms responsible for human aggression disorders. One candidate organism for such studies is the ant Messor pergandei. Queens exhibit predictable aggressive behaviors that can be readily elicited and easily quantified. There are three distinct aggressive repertoires intrinsic to queen geographic origin: 1) queens that are aggressive originally but later tolerant, 2) queens that are tolerant initially but later develop extreme aggression, and 3) queens that are always tolerant. Because the molecular mechanisms resulting in aggression appear to be evolutionarily conserved between insects and mammals, these queens could serve as an important model organism to study the molecular bases of aggression. Using the UVM/VGN proteomics facility, we plan to investigate which proteins are differentially expressed between aggressive and non-aggressive queens, and to identify them with mass spectometry. Although the project is not yet complete, we have demonstrated that a significant proportion of proteins present in M. pergandei queens can be identified using the honeybee genome (Apis mellifera) as a reference database. This suggests that mass spectometry can be an informative technique even when other proteomic resources for a particular species are not available. Over the next two months, we will be conducting comparative studies of the three queen types to identify putative proteins involved in mediating aggression.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016462-08
Application #
7959896
Study Section
Special Emphasis Panel (ZRR1-RI-4 (02))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
8
Fiscal Year
2009
Total Cost
$6,780
Indirect Cost
Name
University of Vermont & St Agric College
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
Wagner, Benjamin A; Braddick, Valerie C; Batson, Christopher G et al. (2018) Effects of testosterone dose on spatial memory among castrated adult male rats. Psychoneuroendocrinology 89:120-130
Mireault, Gina C; Crockenberg, Susan C; Heilman, Keri et al. (2018) Social, cognitive, and physiological aspects of humour perception from 4 to 8 months: Two longitudinal studies. Br J Dev Psychol 36:98-109
Mireault, Gina C; Rainville, Brady S; Laughlin, Breanna (2018) Push or Carry? Pragmatic Opportunities for Language Development in Strollers vs. Backpacks. Infancy 23:616-624
Mireault, Gina C (2017) Laughing MATTERS. Sci Am Mind 28:33-37
Nock, Adam M; Wargo, Matthew J (2016) Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators. J Bacteriol 198:2503-14
Spritzer, M D; Curtis, M G; DeLoach, J P et al. (2016) Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats. Neuroscience 318:143-56
Hinkle, Karen L; Anderson, Chad C; Forkey, Blake et al. (2016) Exposure to the lampricide 3-trifluoromethyl-4-nitrophenol results in increased expression of carbohydrate transporters in Saccharomyces cerevisiae. Environ Toxicol Chem 35:1727-32
Reddy, Vasudevi; Mireault, Gina (2015) Teasing and clowning in infancy. Curr Biol 25:R20-3
Symeonides, Menelaos; Murooka, Thomas T; Bellfy, Lauren N et al. (2015) HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts. Viruses 7:6590-603
Xie, Yi; Jin, Yu; Merenick, Bethany L et al. (2015) Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Sci Signal 8:ra44

Showing the most recent 10 out of 178 publications