This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Our laboratory is interested in uncovering novel motifs important in the transcriptional regulation of spermatogenesis-specific genes. Computational prediction of novel transcription factor and regulatory protein binding sites is a daunting task due in large part to the small size of the binding sites. However, there are several computational approaches useful for uncovering sites with potential to function as regulatory binding sites. These include motif-finding algorithms (Hidden Markov Models), statistical sampling methods (Gibbs sampling), sequence comparison methods coupled to some type of motif finding or probabilistic analysis methodology (Phylogenetic footprinting), and genetic algorithms. Spermatogenesis is a highly conserved developmental process in vertebrates. We hypothesize that genes with conserved expression during spermatogenesis in disparate vertebrate lineages are controlled by evolutionarily conserved mechanisms. To test our hypothesis, we employ the sequence analysis methods outlined above to search for motifs in the genomic regions upstream of spermatogenesis-specific genes from human as well as various model organisms, including rodents and fish. Evaluating the function of candidate motifs proceeds by means of the electrophoretic mobility shift assay, an assay that tests for the ability of nuclear proteins purified from the testis of mice, skates and the dogfish shark to specifically bind probes containing the candidate motif.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016463-06
Application #
7381438
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
6
Fiscal Year
2006
Total Cost
$99,431
Indirect Cost
Name
Mount Desert Island Biological Lab
Department
Type
DUNS #
077470003
City
Salisbury Cove
State
ME
Country
United States
Zip Code
04672
Ariyachet, Chaiyaboot; Beißel, Christian; Li, Xiang et al. (2017) Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 104:499-519
Hahn, Mark E; Karchner, Sibel I; Merson, Rebeka R (2017) Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. Curr Opin Toxicol 2:58-71
Nickerson, Chelsea A; Brown, Alexandra L; Yu, Waylin et al. (2017) Prenatal choline supplementation attenuates MK-801-induced deficits in memory, motor function, and hippocampal plasticity in adult male rats. Neuroscience 361:116-128
Palopoli, Michael F; Tra, Van; Matoin, Kassey et al. (2017) Evolution of host range in the follicle mite Demodex kutzeri. Parasitology 144:594-600
Mangiamele, Lisa A; Gomez, Julia R; Curtis, Nancy J et al. (2017) GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J Comp Neurol 525:252-270
Wirth, Peter; Yu, Waylin; Kimball, Amanda L et al. (2017) New method to induce mild traumatic brain injury in rodents produces differential outcomes in female and male Sprague Dawley rats. J Neurosci Methods 290:133-144
Christie, Andrew E; Roncalli, Vittoria; Cieslak, Matthew C et al. (2017) Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen Comp Endocrinol 243:96-119
Dickinson, Patsy S; Qu, Xuan; Stanhope, Meredith E (2016) Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 41:149-157
Dickinson, Patsy S; Calkins, Andrew; Stevens, Jake S (2015) Related neuropeptides use different balances of unitary mechanisms to modulate the cardiac neuromuscular system in the American lobster, Homarus americanus. J Neurophysiol 113:856-70
Palopoli, Michael F; Peden, Colin; Woo, Caitlin et al. (2015) Natural and experimental evolution of sexual conflict within Caenorhabditis nematodes. BMC Evol Biol 15:93

Showing the most recent 10 out of 246 publications