This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The focus of this project is on the structure elucidation of membrane transporter proteins that underlie the molecular processes of apoptosis evasion and drug resistance in cancer cells. Mitochondria mediate programmed cell death through a complex balancing of pro- and anti-apoptotic factors that respond to a variety cellular growth and homeostatic signals. The primary regulators of this process are known to be members of the Bcl-2 family of proteins (including Bid, Bax and Bak);however the precise mechanism remains molecularly uncharacterized. Exciting novel participants in mitochondrial apoptosis are the mitochondrial carrier homologues (MtCH1 &MtCH2), members of the solute carrier super-family of transport proteins. MtCH2 was found to mediate tBid association with the mitochondrial membrane and is properly positioned to be either a mediator of Bax/Bak conformational change and membrane integration, or perhaps even an additional constituent of MAC channels which release cytochrome C from mitochondria as the committing step towards apoptosis. Many new techniques have recently emerged for the structure determination of integral membrane proteins, proteins that traditionally have been recalcitrant to high resolution structural analysis. We use Mistic-fusion technology, which we continue to develop, to produce MtCH1 &MtCH2 recombinantly in bacteria culture at high yields. Our lab will utilize the data obtained from these studies for the structure-based design of novel therapeutic agents to target these proteins. Our primary approach is the use of X-ray crystallography, in combination with biochemical and biophysical assays, to determine the structural and functional mechanisms by which these critical molecules contribute to carcinogenesis, thus uncovering new approaches to cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR016464-09
Application #
8168225
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2010-09-01
Project End
2011-05-31
Budget Start
2010-09-01
Budget End
2011-05-31
Support Year
9
Fiscal Year
2010
Total Cost
$73,057
Indirect Cost
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Wang, Xia; Amei, Amei; de Belle, J Steven et al. (2018) Environmental effects on Drosophila brain development and learning. J Exp Biol 221:
Muñoz, Francisco V; Larkey, Linda (2018) THE CREATIVE PSYCHOSOCIAL GENOMIC HEALING EXPERIENCE (CPGHE) AND GENE EXPRESSION IN BREAST CANCER PATIENTS: A FEASIBILITY STUDY. Adv Integr Med 5:9-14
Lim, Sung Don; Yim, Won Choel; Liu, Degao et al. (2018) A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. Plant Biotechnol J :
Francis, Ashish; Kleban, Shawna R; Stephenson, Linda L et al. (2017) Hyperbaric Oxygen Inhibits Reperfusion-Induced Neutrophil Polarization and Adhesion Via Plasmin-Mediated VEGF Release. Plast Reconstr Surg Glob Open 5:e1497
Kim, Minkyung; Fontelonga, Tatiana M; Lee, Clare H et al. (2017) Motor axons are guided to exit points in the spinal cord by Slit and Netrin signals. Dev Biol 432:178-191
Etges, William J; de Oliveira, Cássia C; Rajpurohit, Subhash et al. (2017) Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila. Ecol Evol 7:619-637
Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A et al. (2017) Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J Bacteriol 199:
Villegas-Negrete, Norberto; Robleto, Eduardo A; Obregón-Herrera, Armando et al. (2017) Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis. PLoS One 12:e0179625
Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung et al. (2016) Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling. Neural Dev 11:18
Blumröder, R; Glunz, A; Dunkelberger, B S et al. (2016) Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. Genes Brain Behav 15:647-59

Showing the most recent 10 out of 291 publications