This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Variation in animal behavior is the product of gene by environment interactions. Specifically reproductive behaviors among vertebrates are often regulated by chemical signals (e.g., hormones) which are influenced by environmental cues. In many vertebrate species, variation in reproductive behavior exists as alternative reproductive tactics (e.g., male birds obtaining additional reproductive success through extra-pair mating, whereas other males assume a monogamous relationship). Individuals participating in alternative reproductive tactics likely exhibit physiological differences in hormone secretion and could potentially display unique variation in the genetic code. Indeed, unique genetic variation in hormone signaling pathways may provide valuable information for variation in reproductive physiology and development under certain environmental conditions. Currently, most research investigating alternative reproductive behaviors in animals have focused singly on either proximate mechanisms or ultimate explanations for behaviors. Few studies have combined approaches to address potential gene environment interactions influencing differences in reproductive tactics. Thus, for this research we propose three specific aims to study variation in alternative reproductive behaviors in an avian model system. First, we will measure success for individuals pursuing alternative reproductive tactics using molecular genetic analyses of parentage. Second, we aim to identify proximate mechanisms associated with differences in reproductive behavior via measures of hormones in avian eggs and fecal samples. Third, we will use the information obtained from aims one and two to conduct an informed analysis (e.g., identify specific target tissues based on important hormone pathways identified in specific aim 2) of differences in gene expression. Specifically, we aim to identify the molecular basis of hormone action for observed phenotypic polymorphisms (e.g., reproductive tactics).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016469-11
Application #
8360034
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$66,482
Indirect Cost
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Barta, Cody L; Liu, Huizhan; Chen, Lei et al. (2018) RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 5:180005
Liu, Huizhan; Chen, Lei; Giffen, Kimberlee P et al. (2018) Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci 11:356
Wehrkamp, Cody J; Natarajan, Sathish Kumar; Mohr, Ashley M et al. (2018) miR-106b-responsive gene landscape identifies regulation of Kruppel-like factor family. RNA Biol 15:391-403
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J et al. (2018) Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 4:123-139
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301
Lu, Guoqing; Luhr, Jamie; Stoecklein, Andrew et al. (2017) Complete Genome Sequences ofPseudomonas fluorescensBacteriophages Isolated from Freshwater Samples in Omaha, Nebraska. Genome Announc 5:
Azadmanesh, Jahaun; Trickel, Scott R; Weiss, Kevin L et al. (2017) Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals. Acta Crystallogr F Struct Biol Commun 73:235-240
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Bonham-Carter, Oliver; Thapa, Ishwor; From, Steven et al. (2017) A study of bias and increasing organismal complexity from their post-translational modifications and reaction site interplays. Brief Bioinform 18:69-84

Showing the most recent 10 out of 322 publications