This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The overall objective of this proposal is to examine the role of AMP-activated protein kinase (AMPK) in fetal and neonatal skeletal muscle development that occurs in the setting of maternal obesity. Maternal obesity negatively affects fetal muscle development including increase in the number of intramuscular adipocytes, pre-disposing offspring muscle to insulin resistance, a key event leading to type II diabetes. AMPK has crucial roles in energy metabolism. In this project, we will study the role of AMPK in cell differentiation during fetal skeletal muscle development, focusing on the formation of adipocytes. Meanwhile, we will define the underlying mechanisms regulating adipogenesis as affected by maternal obesity. Knowledge obtained will provide targets for interventions to ensure proper fetal SM development in fetuses of the increasing number of obese pregnant women in this country, allowing them to deliver healthy children.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016474-11
Application #
8359731
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$136,908
Indirect Cost
Name
University of Wyoming
Department
Type
Schools of Allied Health Profes
DUNS #
069690956
City
Laramie
State
WY
Country
United States
Zip Code
82071
Corda, Erica; Du, Xiaotang; Shim, Su Yeon et al. (2018) Interaction of Peptide Aptamers with Prion Protein Central Domain Promotes ?-Cleavage of PrPC. Mol Neurobiol 55:7758-7774
Lindblom, Stormy D; Wangeline, Ami L; Valdez Barillas, Jose R et al. (2018) Fungal Endophyte Alternaria tenuissima Can Affect Growth and Selenium Accumulation in Its Hyperaccumulator Host Astragalus bisulcatus. Front Plant Sci 9:1213
Zhang, Yingmei; Ren, Jun (2018) Corrigendum to ""Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: Role of Akt dephosphorylation"" [Free Radic. Biol. Med. 51(12) (2011) 2172-2184]. Free Radic Biol Med 117:259-261
Jiang, Zhongliang; Jiang, Kun; McBride, Ralph et al. (2018) Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels. Biomed Mater 13:065012
Jiang, Zhongliang; Xia, Bingzhao; McBride, Ralph et al. (2017) A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. J Mater Chem B 5:173-180
Young, Coleman H; Rothfuss, Heather M; Gard, Philip F et al. (2017) Citrullination regulates the expression of insulin-like growth factor-binding protein 1 (IGFBP1) in ovine uterine luminal epithelial cells. Reproduction 153:1-10
Wykes, Thomas L; Lee, Aaron A; Bourassa, Katelynn et al. (2017) Diabetes Knowledge Among Adults with Serious Mental Illness and Comorbid Diabetes Mellitus. Arch Psychiatr Nurs 31:190-196
Thomas, Jenifer J; Moring, John C; Harvey, Terra et al. (2016) Risk of type 2 diabetes: health care provider perceptions of prevention adherence. Appl Nurs Res 32:1-6
Edwards, Brian S; Dang, An K; Murtazina, Dilyara A et al. (2016) Dynamin Is Required for GnRH Signaling to L-Type Calcium Channels and Activation of ERK. Endocrinology 157:831-43
Kapali, Jyoti; Kabat, Brock E; Schmidt, Kelly L et al. (2016) Foxo1 Is Required for Normal Somatotrope Differentiation. Endocrinology 157:4351-4363

Showing the most recent 10 out of 325 publications