This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The cytochrome P450 enzymes mediate the metabolism of various xenobiotic and endogenous compounds and can bioactivate pro-carcinogens such as benzo-[a]-pyrene. Many drug-drug interactions are caused by the effect of one of the drugs on the activity of the P450 isoforms involved in the metabolism of the second drug. Some isoforms demonstrat atypical kinetics for the metabolism of certain substrates. We and others have suggested that simultaneousbinding of two substrates in the active site (a two-site model) is responsible for most atypical kinetic profiles. Dapsone and structurally related substrates, have been shown to activate CYP2C9 metabolism of flurbiprofen, naproxen, and piroxicam. The kinetic data suggest both substrate and activator are present in the active site. Experimentally, we conducted kinetic and NMR studies and demonstrated the simultaneous binding of flurbiprofen and dapsone in theactive site of CYP2C9, though at low resolution. Here we propose to develop a molecular model that can be used to predict whether simultaneous binding is likely as the kinetic and NMR methods can not be used as a high throughput screening method. We propose to explore the structure of the binding of flurbiprofen and dapsone to the active site of CYP2C9 and activation of CYP2C9 by dapsone utilizing docking methods and molecular dynamical (MD) simulations.Specifically, we will i) perform extended MD simulations of CYP2C9 with flurbiporfen, naproxen, and piroxicam alone and in the presence of dapsone docked in the active site, ii) test and validate the computational model by performing kinetic screens of selected dapsone analogs from a molecular modeling approach and correlate with NMR data, iii) compare wild type CYP2C9 to the F114L mutant with respect to the orientations of substrates in the active site and iv) compare wild type CYP2C9 to the F476L mutant, also with respect to the orientations of substrates in the active site. From these studies we will confirm the possibility of a two-site model for the activation of CYP2C9 by dapsone and correlate the results with NMR and kinetic data. Successful completion of the project will provide insight into the mechanism of activation of CYP2C9 metabolism of flurbiprofen, naproxen and piroxicam by dapsone using computational techniques. This method may also be a useful tool in determining if a two-site model can explain all categories of atypical kinetics. The results of these computational studies will provide a method by which harmfuland/or beneficial drug-drug interactions can be predicted with computational tools prior to costly, time intensive in vivo studies. It will also have significant impact in the area of drug and drug helper design. Finally, the method develops here, though specific for CYP2C9, will be applicable to other P450 isoforms and substrates.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016477-07
Application #
7610246
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
7
Fiscal Year
2007
Total Cost
$138,194
Indirect Cost
Name
Marshall University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
036156615
City
Huntington
State
WV
Country
United States
Zip Code
25701
Gao, Ying; Yin, Junfeng; Rankin, Gary O et al. (2018) Kaempferol Induces G2/M Cell Cycle Arrest via Checkpoint Kinase 2 and Promotes Apoptosis via Death Receptors in Human Ovarian Carcinoma A2780/CP70 Cells. Molecules 23:
Pan, Haibo; Li, Jin; Rankin, Gary O et al. (2018) Synergistic effect of black tea polyphenol, theaflavin-3,3'-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J Funct Foods 46:1-11
Zhang, Shichao; Xing, Malcolm M Q; Li, Bingyun (2018) Capsule Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS Appl Mater Interfaces :
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218-226
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary Compound Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 40:573-581
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/?-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 9:525-533
Jia, Ling-Yan; Wu, Xue-Jin; Gao, Ying et al. (2017) Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia sinensis) on Human Ovarian Cancer Cells. Molecules 22:
Pan, Haibo; Wang, Fang; Rankin, Gary O et al. (2017) Inhibitory effect of black tea pigments, theaflavin?3/3'-gallate against cisplatin-resistant ovarian cancer cells by inducing apoptosis and G1 cell cycle arrest. Int J Oncol 51:1508-1520
Kocher, Caitlin; Christiansen, Matthew; Martin, Sarah et al. (2017) Sexual dimorphism in obesity-related genes in the epicardial fat during aging. J Physiol Biochem 73:215-224
Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen et al. (2017) Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women. J Gerontol A Biol Sci Med Sci 72:1595-1606

Showing the most recent 10 out of 199 publications