This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Individuals with Familial Hypertriglyceridemia (FHTG) have elevated levels of triglycerides and normal total cholesterol. FHTG affects about 1% of the US population and is one of the most common genetic lipid disorders in patients with coronary artery disease. FHTG is thought to segregate as an autosomal dominant disorder but the single segregation analysis has not been conclusively replicated. The long-term objective of this proposal is to identify gene(s) that predispose individuals to FHTG using familial-based linkage analysis and determine how elevated levels of serum triglycerides and lipids predispose these individuals to atherosclerosis. We plan to accomplish the objective by pursuing the following two specific aims. 1. Identify Families with FHTG. We will identify probands through the statewide CARDIAC program and through a network of health clinics. 2. Identify FHTG susceptibility loci by linkage analysis on a genome-wide set of markers and on a small set of markers previously identified FHTG candidate loci. We will use linkage analysis methods to determine which loci contribute to FHTG in patients from the WV population and test for linkage and association with single nucleotide polymorphisms (SNPs) that are known to map to the regions of interest.The proposed work is innovative because we have access to patients in West Virginia who have not been studied. Our findings will be significant because they will further our undrstanding of the pathogenesis of vascular disease and because these susceptibility genes represent new targets for preventative and therapeutic interventions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016477-07
Application #
7610248
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
7
Fiscal Year
2007
Total Cost
$172,672
Indirect Cost
Name
Marshall University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
036156615
City
Huntington
State
WV
Country
United States
Zip Code
25701
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/?-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 9:525-533
Gao, Ying; Yin, Junfeng; Rankin, Gary O et al. (2018) Kaempferol Induces G2/M Cell Cycle Arrest via Checkpoint Kinase 2 and Promotes Apoptosis via Death Receptors in Human Ovarian Carcinoma A2780/CP70 Cells. Molecules 23:
Pan, Haibo; Li, Jin; Rankin, Gary O et al. (2018) Synergistic effect of black tea polyphenol, theaflavin-3,3'-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J Funct Foods 46:1-11
Zhang, Shichao; Xing, Malcolm M Q; Li, Bingyun (2018) Capsule Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS Appl Mater Interfaces :
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218-226
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary Compound Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 40:573-581
Haramizu, Satoshi; Asano, Shinichi; Butler, David C et al. (2017) Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts. J Nutr Biochem 50:103-115
Jones, Brandon C; Kelley, Laura C; Loskutov, Yuriy V et al. (2017) Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior. Mol Cancer Res 15:670-682
Lemaster, Kent; Jackson, Dwayne; Welsh, Donald G et al. (2017) Altered distribution of adrenergic constrictor responses contributes to skeletal muscle perfusion abnormalities in metabolic syndrome. Microcirculation 24:
He, Xiaoqing; Wang, Liying; Riedel, Heimo et al. (2017) Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16:63

Showing the most recent 10 out of 199 publications