This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The Bioinformatics Core supports access to software and hardware tools needed for sequence and structure analysis and provides training in these areas. Accelrys has announced that it will no longer support the GCG package. To continue support of sequence-based tools, the WV-INBRE will transition to Vector NTI. This software suite is available to academia-based researchers without charge. We plan to host workshop(s) on use of VectorNTI at lead institution(s) early in the summer program so that summer program participants can attend. The funds used for the Accelrys license will be re-directed to license(s) for pathways software. We are evaluating two systems: the GeneGo MetaCore/MetaDrug suite (with MetaRodent and MapEditor add ons) and Ingenuity Pathway Analysis. Both of these can be implemented as web-based applications. The servers hosting the Accelrys GCG package will be used to for bioinformatics support of the WVU Proteomics Core. In addition, the Bioinformatics Core is providing bioinformatics analysis support for the WVU Proteomics Core facility (established under the Signal Transduction and Cancer COBRE).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016477-08
Application #
7720323
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
8
Fiscal Year
2008
Total Cost
$110,693
Indirect Cost
Name
Marshall University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
036156615
City
Huntington
State
WV
Country
United States
Zip Code
25701
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/?-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 9:525-533
Gao, Ying; Yin, Junfeng; Rankin, Gary O et al. (2018) Kaempferol Induces G2/M Cell Cycle Arrest via Checkpoint Kinase 2 and Promotes Apoptosis via Death Receptors in Human Ovarian Carcinoma A2780/CP70 Cells. Molecules 23:
Pan, Haibo; Li, Jin; Rankin, Gary O et al. (2018) Synergistic effect of black tea polyphenol, theaflavin-3,3'-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J Funct Foods 46:1-11
Zhang, Shichao; Xing, Malcolm M Q; Li, Bingyun (2018) Capsule Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS Appl Mater Interfaces :
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218-226
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary Compound Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 40:573-581
Haramizu, Satoshi; Asano, Shinichi; Butler, David C et al. (2017) Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts. J Nutr Biochem 50:103-115
Jones, Brandon C; Kelley, Laura C; Loskutov, Yuriy V et al. (2017) Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior. Mol Cancer Res 15:670-682
Lemaster, Kent; Jackson, Dwayne; Welsh, Donald G et al. (2017) Altered distribution of adrenergic constrictor responses contributes to skeletal muscle perfusion abnormalities in metabolic syndrome. Microcirculation 24:
He, Xiaoqing; Wang, Liying; Riedel, Heimo et al. (2017) Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16:63

Showing the most recent 10 out of 199 publications