This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cells of the cardiovascular system are continuously exposed to the effects of mechanical forces such as stretching and fluid shear stress. These forces, which are created by the pulsatile nature of blood flow when the heart contracts and relaxes, have a marked influence on cell structure and function. The adaptations of these cells, which include enhanced growth and migration, seem to be important in the pathological conditions that accompany cardiovascular diseases such as atherosclerosis and hypertension. Cardiovascular disease remains a major cause of morbidity and mortality in the US and the economic and human costs associated with pathologies such as atherosclerosis, hypertension and restenosis are enormous. This has resulted in an intense research interest in the mechanisms which regulate contraction, migraton and growth of vascular smooth muscle cell (VSMC). While it is now clear that mechanical forces imposed on VSMC in the vessel wall are important factors in the initiation and progression of these changes, the molecular mechanisms involved in these adaptations are not fully understood. In addition, it is now clear that the basic mechanism of smooth muscle contraction can only be explained in light of actin remodeling. However, the exact nature of cytoskeletal reorganization and the mechanisms regulating these changes are not well known. The main goal of this project to is to elucidate the acute response in cytoskeletal reorganization and intracellular signaling and during mechanical stress of VSMC. Utilizing molecular approaches combined with fluorescence microscopy, and relying on the precise changes in cell orientation and actin cytoskeletal reorganization as endpoints for quantitative assessment of responsiveness to mechanical strain we will evaluate the role of various cytoskeletal structures on the response of VSMC to stretch, make a systematic determination of effects of various types of mechanical stress on activation of cell signaling molecules, and evaluate the effects of resveratrol, a purported cardioprotective molecule for its potential effects on stretch-induced cell signaling and receptor mediated cellular hypertrophy. The use of pharmacologic and molecular techniques to stabilize, destabilize or downregulate specific cytoskeletal components is expected to provide clear answers concerning the role of specific components in mechanotransduction and the cell orientation response. The inhibition or downregulation of specific signaling proteins is expected to provide information concerning pathways regulating mechanosensing and transduction. The knowledge gained may be useful in the development of therapeutic agents regulating mechanotransduction mechanisms contributing to cardiovascular pathologies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016477-10
Application #
8167674
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
10
Fiscal Year
2010
Total Cost
$185,228
Indirect Cost
Name
Marshall University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
036156615
City
Huntington
State
WV
Country
United States
Zip Code
25701
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/?-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 9:525-533
Gao, Ying; Yin, Junfeng; Rankin, Gary O et al. (2018) Kaempferol Induces G2/M Cell Cycle Arrest via Checkpoint Kinase 2 and Promotes Apoptosis via Death Receptors in Human Ovarian Carcinoma A2780/CP70 Cells. Molecules 23:
Pan, Haibo; Li, Jin; Rankin, Gary O et al. (2018) Synergistic effect of black tea polyphenol, theaflavin-3,3'-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J Funct Foods 46:1-11
Zhang, Shichao; Xing, Malcolm M Q; Li, Bingyun (2018) Capsule Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS Appl Mater Interfaces :
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218-226
Zhang, Yu; Chen, Shiguo; Wei, Chaoyang et al. (2018) Dietary Compound Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 40:573-581
Haramizu, Satoshi; Asano, Shinichi; Butler, David C et al. (2017) Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts. J Nutr Biochem 50:103-115
Jones, Brandon C; Kelley, Laura C; Loskutov, Yuriy V et al. (2017) Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior. Mol Cancer Res 15:670-682
Lemaster, Kent; Jackson, Dwayne; Welsh, Donald G et al. (2017) Altered distribution of adrenergic constrictor responses contributes to skeletal muscle perfusion abnormalities in metabolic syndrome. Microcirculation 24:
He, Xiaoqing; Wang, Liying; Riedel, Heimo et al. (2017) Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16:63

Showing the most recent 10 out of 199 publications