This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The long-term objective of this research is to resolve mechanisms of allosteric communications across proteins, a common biochemical motif in the regulation, ligand-induced oligomerization, and synchronization of multimeric enzymes as well as enzyme complexes. A paradigm for such systems is carbamoyl phosphate synthetase (CPS) from E. coli. This enzyme synthesizes carbamoyl phosphate for subsequent assimilation into arginine and the various pyrimidines through a mechanism employing five substrates, at least three unstable intermediates, and three distinct active sites separated by almost 100 . With a perfect stoichiometry realized between reactants, the synchronization of the reaction centers is thought to proceed initially via an allosteric impulse between the small and large subunits.
The specific aims for this proposal are consequently: (1) to probe specific regions of the protein matrix with intrinsic fluorophores to locate and characterize the dynamic, conformational variations establishing the inter-subunit synchronization mechanism; and (2) to assess the potential for the binding of analogs of substrate, transition-state, and reactive intermediate to induce synchronizing kinetic signals and/or conformational changes, thereby highlighting the potential 'trigger' for active site coordination. Primary techniques will include: site-directed mutagenesis within a bacterial system; enzyme kinetics via multiple coupling enzyme systems; and steady-state and frequency-domain fluorescence spectroscopy. More generally, in correlating the orchestration of catalytic domains of the protein with its dynamic conformational changes, insight will also be gained into how entire enzyme systems are integrated together in sharing unstable intermediates.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016478-08
Application #
7725080
Study Section
Special Emphasis Panel (ZRR1-RI-7 (02))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
8
Fiscal Year
2008
Total Cost
$106,532
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2018) Modeling Transcriptional Rewiring in Neutrophils Through the Course of Treated Juvenile Idiopathic Arthritis. Sci Rep 8:7805
Wetherill, Marianna S; Williams, Mary B; Gray, Karen A (2017) SNAP-Based Incentive Programs at Farmers' Markets: Adaptation Considerations for Temporary Assistance for Needy Families (TANF) Recipients. J Nutr Educ Behav 49:743-751.e1
Hannafon, Bethany N; Trigoso, Yvonne D; Calloway, Cameron L et al. (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18:90
Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P et al. (2016) Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes. Polyhedron 114:118-127
Trigoso, Yvonne D; Evans, Russell C; Karsten, William E et al. (2016) Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase. PLoS One 11:e0146525
Khandaker, Morshed; Riahinezhad, Shahram; Sultana, Fariha et al. (2016) Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Int J Nanomedicine 11:585-94
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Hannafon, Bethany N; Carpenter, Karla J; Berry, William L et al. (2015) Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer 14:133
Yao, Jian; Weng, Yunqi; Dickey, Alexia et al. (2015) Plants as Factories for Human Pharmaceuticals: Applications and Challenges. Int J Mol Sci 16:28549-65
Khandaker, Morshed; Meng, Zhaotong (2015) The Effect of Nanoparticles and Alternative Monomer on the Exothermic Temperature of PMMA Bone Cement. Procedia Eng 105:946-952

Showing the most recent 10 out of 165 publications