This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator.
Specific Aims (summary): Disorders that disrupt attention (e.g., dyslexia, ADHD) prevent proper stimulus sorting. This may be particularly detrimental to speech processing, due in part to: disrupted working memory, the acoustic characteristics of speech and the fact that sounds from multiple sources are combined as a single complex upon reaching a receiver. Thus, the long-range goals of this project are to understand 1) how an acoustic complex is deconstructed into its components so that sounds may be identified, grouped and assigned to their correct sources;and, 2) how such sorting and grouping is modulated by attention. There is presently no neuronal definition of attention in general and to speech in particular, as model systems rarely exhibit the processing shown by humans for speech. The proposed research tests the overall hypotheses that for speech-like sounds auditory groups are formed through comparisons between multiple cues and that the pre-cortical neural units responsible for such processing can be modulated by dopaminergic input to produce different grouping decisions. This research uses an animal model in which speech-like sounds are behaviorally relevant, there is a robust bioassasy for attention, and the brain is readily accessible through electrophysiological and molecular-marking techniques.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016816-09
Application #
8167391
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2010-02-01
Project End
2011-01-31
Budget Start
2010-02-01
Budget End
2011-01-31
Support Year
9
Fiscal Year
2010
Total Cost
$187,989
Indirect Cost
Name
Louisiana State Univ Hsc New Orleans
Department
Neurology
Type
Schools of Medicine
DUNS #
782627814
City
New Orleans
State
LA
Country
United States
Zip Code
70112
Ponnath, Abhilash; Farris, Hamilton E (2014) Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs. Front Neural Circuits 8:85
Ferland, Chantelle L; Harris, Erin P; Lam, Mai et al. (2014) Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology 155:2942-52
Lentz, Jennifer J; Jodelka, Francine M; Hinrich, Anthony J et al. (2013) Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19:345-50
Renner, Nicole A; Sansing, Hope A; Inglis, Fiona M et al. (2013) Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. J Cell Physiol 228:1284-94
Harrison, L M; Muller, S H; Spano, D (2013) Effects of the Ras homolog Rhes on Akt/protein kinase B and glycogen synthase kinase 3 phosphorylation in striatum. Neuroscience 236:21-30
Ferland, Chantelle L; Hawley, Wayne R; Puckett, Rosemary E et al. (2013) Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biol Psychiatry 74:927-35
Ponnath, Abhilash; Hoke, Kim L; Farris, Hamilton E (2013) Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:295-313
Imaizumi, Kazuo; Shih, Jonathan Y; Farris, Hamilton E (2013) Global hyper-synchronous spontaneous activity in the developing optic tectum. Sci Rep 3:1552
Jones, Patricia L; Farris, Hamilton E; Ryan, Michael J et al. (2013) Do frog-eating bats perceptually bind the complex components of frog calls? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:279-83
Harrison, Laura M (2012) Rhes: a GTP-binding protein integral to striatal physiology and pathology. Cell Mol Neurobiol 32:907-18

Showing the most recent 10 out of 101 publications