This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Cells have surveillance systems called checkpoints that monitor DNA damage and DNA replication stress. Exposure of cells to genotoxic agents such as hydroxyurea (HU) activates replication checkpoint that slows down or stalls DNA replication. Several checkpoint proteins interact among themselves to monitor replication defects and activate repair processes to maintain DNA integrity. HU treatment of cells also causes actin depolymerization, and Swe1 accumulation that monitors cells shape and growth through morphogenesis checkpoint. Approximately 300 genes from various pathways have been found to confer HU resistance and monitor cell growth and viability. However, less is known about the mechanisms of their action and the interactions among these genes to confer resistance to HU. The single inositol phosphosphingolipid phospholipase C gene ISC1 of S. cerevisiae confers resistance to HU and MMS. Deletion of ISC1 causes G2/M arrest in HU and this defect can be overcome upon deletion of SWE1 gene. In addition, genome-wide analyses have shown that ISC1 gene genetically interacts with DNA replication/sister-chromatid cohesion genes CSM3, CTF4, CTF8 and CTF18. Our goal is to understand the mechanism of action of Isc1 in cellular integrity upon exposure to replication stress agents and also its interaction with the DNA replication/ sister-chromatid cohesion genes to maintain cell growth and viability.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017677-10
Application #
8360381
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-07-01
Project End
2012-07-18
Budget Start
2011-07-01
Budget End
2012-07-18
Support Year
10
Fiscal Year
2011
Total Cost
$144,546
Indirect Cost
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Zunke, Friederike; Moise, Alexandra C; Belur, Nandkishore R et al. (2018) Reversible Conformational Conversion of ?-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 97:92-107.e10
Vilaça, Rita; Barros, Ivo; Matmati, Nabil et al. (2018) The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 1864:79-88
Chen, Wei; Wang, Bo; Gruber, Jordon D et al. (2018) Acyl Carrier Protein 3 Is Involved in Oxidative Stress Response in Pseudomonas aeruginosa. Front Microbiol 9:2244
Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin et al. (2018) C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 9:4149
Jin, Junfei; Lu, Zhongyang; Li, Yanchun et al. (2018) LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. J Leukoc Biol 104:843-853
Snider, Justin M; Snider, Ashley J; Obeid, Lina M et al. (2018) Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 59:1046-1057
Zhang, Ning; Valentine, Joseph M; Zhou, You et al. (2017) Sustained NF?B inhibition improves insulin sensitivity but is detrimental to muscle health. Aging Cell 16:847-858
Pulkoski-Gross, Michael J; Uys, Joachim D; Orr-Gandy, K Alexa et al. (2017) Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins Other Lipid Mediat 130:47-56
Alexaki, Aikaterini; Clarke, Benjamin A; Gavrilova, Oksana et al. (2017) De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. J Biol Chem 292:3929-3939
Hao, Limin; Ben-David, Oshrit; Babb, Suzann M et al. (2017) Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 42:951-962

Showing the most recent 10 out of 196 publications