This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Diarrhea affects approximately 4 billion people per year worldwide with number of deaths estimated to be around 2 million. Escherichia coli (E. coli) that attach to the surface of the intestinal lining and cause its destruction, are common causes for infectious diarrhea worldwide, especially in children less than 2 years of age. Since E. coli does not cause clinical illness in mice, Citrobacter rodentium a bacteria that causes natural disease in mice with clinical progression of illness that closely resembles human E. coli infections;is used as an in-vivo model. As in humans, the susceptibility of mice to these bacteria is dependent of age group (the young more severely affected than the adults), and genetic background. Many studies in mice have shown that the immune status has minimal effect on the severity or course of the disease. Our study is aimed at understanding the role of epithelial cell lining of the intestines in defining the severity and course of disease. Epithelial cells are ideal target, since they not only provide a physical barrier in the intestine, but also actively part-take in controlling the local resistance to infectious agents. We will evaluate structural and functional changes in epithelial cells following infection with C. rodentium, and the results will help us understand the role of epithelial cells in determining the susceptibility and severity of bacterial diarrheal illnesses of humans and animals.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017686-09
Application #
8167835
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
9
Fiscal Year
2010
Total Cost
$22,360
Indirect Cost
Name
Kansas State University
Department
Anatomy/Cell Biology
Type
Schools of Veterinary Medicine
DUNS #
929773554
City
Manhattan
State
KS
Country
United States
Zip Code
66506
Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro et al. (2018) Co-treatment with a C1B5 peptide of protein kinase C? and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation. Biochem Biophys Res Commun 495:962-968
Kudo, Takayuki; Wangemann, Philine; Marcus, Daniel C (2018) Claudin expression during early postnatal development of the murine cochlea. BMC Physiol 18:1
Paper, Janet M; Mukherjee, Thiya; Schrick, Kathrin (2018) Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants. Plant Methods 14:31
Honda, Keiji; Kim, Sung Huhn; Kelly, Michael C et al. (2017) Molecular architecture underlying fluid absorption by the developing inner ear. Elife 6:
Liu, Qinfang; Miller, Laura C; Blecha, Frank et al. (2017) Reduction of infection by inhibiting mTOR pathway is associated with reversed repression of type I interferon by porcine reproductive and respiratory syndrome virus. J Gen Virol 98:1316-1328
Dib, Lea H; Ortega, M Teresa; Melgarejo, Tonatiuh et al. (2016) Establishment and characterization of DB-1: a leptin receptor-deficient murine macrophage cell line. Cytotechnology 68:921-33
Miyazaki, Hiromitsu; Wangemann, Philine; Marcus, Daniel C (2016) The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC Physiol 17:1
Krishnamoorthy, Gayathri; Reimann, Katrin; Wangemann, Philine (2016) Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca(2+) sensitivity but not on Ca(2+) sparks or BK channels. BMC Physiol 16:6
Montero-AstĂșa, Mauricio; Ullman, Diane E; Whitfield, Anna E (2016) Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virology 493:39-51
Ohta, Naomi; Ishiguro, Susumu; Kawabata, Atsushi et al. (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 10:e0123756

Showing the most recent 10 out of 206 publications