This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Progression of colorectal cancer through stages of increasing malignancy is caused by the stepwise accumulation of mutations in specific genes. Much is known about the genes responsible for initial steps in tumor formation. In contrast to this, the genes that control transitions through later stages of malignancy are largely unknown. In this proposal, we seek to characterize the genetic alterations that are responsible for tumor's ability to infiltrate regional lymph nodes. We will utilize human colorectal cancer surgical specimens of defined clinical stages and identify chromosomal structural alterations, gene expression changes, and specific gene mutations that are unique to lymph node positive disease. These studies will be conducted by accomplishing the following specific aims.
Aim 1 will be a comprehensive analysis of loss of heterozygosity of chromosome 8p in colorectal tumors, and the identification of a minimally-deleted region common to invasive cancers.
Aim 2 will be a comprehensive analysis of alterations in gene expression that occur in tumors with loss of heterozygosity on chromosome 8p.
Aim 3 will be the identification of somatically acquired mutations of 8p candidate tumor suppressor genes in lymph node positive tumors. The overall hypothesis being tested is that a single gene, located on the p arm of chromosome 8, is mutated in node-positive colorectal tumors. This mutation can be detected indirectly through loss of heterozygosity and alterations in gene expression. Finally, the mutation can be detected specifically by direct sequence analysis of the gene. These studies will reveal significant mechanistic insight into the process of lymph node invasion, and will provide prognostic tools and targets for the development of chemotherapeutic agents that specifically target metastatic disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017698-08
Application #
7959760
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
8
Fiscal Year
2009
Total Cost
$133,188
Indirect Cost
Name
University of South Carolina at Columbia
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Wyatt, Michael D; Reilly, Nicole M; Patel, Shikha et al. (2018) Thiopurine-induced mitotic catastrophe in Rad51d-deficient mammalian cells. Environ Mol Mutagen 59:38-48
Montalvo, Ryan N; Hardee, Justin P; VanderVeen, Brandon N et al. (2018) Resistance Exercise's Ability to Reverse Cancer-Induced Anabolic Resistance. Exerc Sport Sci Rev 46:247-253
Eberth, Jan M; Thibault, Annie; Caldwell, Renay et al. (2018) A statewide program providing colorectal cancer screening to the uninsured of South Carolina. Cancer 124:1912-1920
Mentrup, Heather L; Hartman, Amanda; Thames, Elizabeth L et al. (2018) The ubiquitin ligase ITCH coordinates small intestinal epithelial homeostasis by modulating cell proliferation, differentiation, and migration. Differentiation 99:51-61
Oliver, David; Ji, Hao; Liu, Piaomu et al. (2017) Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 7:43023
Alexander, M; Burch, J B; Steck, S E et al. (2017) Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 32:183-192
Zhang, Yu; Davis, Celestia; Shah, Sapana et al. (2017) IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 56:272-287
Gao, Feng J; Shi, Liang; Hines, Timothy et al. (2017) Insulin signaling regulates a functional interaction between adenomatous polyposis coli and cytoplasmic dynein. Mol Biol Cell 28:587-599
Hardee, Justin P; Montalvo, Ryan N; Carson, James A (2017) Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. Oxid Med Cell Longev 2017:8018197
Peña, Edsel A; Wu, Wensong; Piegorsch, Walter et al. (2017) Model Selection and Estimation with Quantal-Response Data in Benchmark Risk Assessment. Risk Anal 37:716-732

Showing the most recent 10 out of 140 publications