This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Biometry Core of the Center for Colon Cancer Research (CCCR) provides statistical and mathematical support to target, senior, and junior CCCR investigators. Assistance and support are in the designing of scientific experiments, studies, and surveys;developing statistical and mathematical models appropriate for the research problems;performing appropriate statistical analyses of data arising from the projects;assessing the validity of the methods used in the analyses of data and developing new methods when appropriate;critiquing and improving statistical portions of manuscripts for publications and grant proposals;writing publication-quality reports pertaining to the results of the statistical analyses for grant applications and manuscripts for publications;and performing basic research to develop new statistical methodology of relevance to cancer researchers. Biometry Core personnel actively participates in the research of investigators through one-on-one consultations and by providing feedback during research presentations by investigators. To increase awareness of CCCR investigators on the important and crucial role of Statistics in scientific research, the Biometry Core will provide training workshops on statistical methodology relevant to cancer research. Increasing the statistical knowledge of CCCR investigators will also further enhance collaborative research and improve statistical consultation sessions. Through the statistical support provided by the Biometry Core to CCCR investigators, it is hoped that the validity and utility of the colon cancer research performed by the investigators will be enhanced. This will have the consequence of contributing in making further inroads to the search for a cure and the prevention of colon cancer.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017698-10
Application #
8360347
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-06-01
Project End
2013-05-31
Budget Start
2011-06-01
Budget End
2013-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$57,978
Indirect Cost
Name
University of South Carolina at Columbia
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Wyatt, Michael D; Reilly, Nicole M; Patel, Shikha et al. (2018) Thiopurine-induced mitotic catastrophe in Rad51d-deficient mammalian cells. Environ Mol Mutagen 59:38-48
Montalvo, Ryan N; Hardee, Justin P; VanderVeen, Brandon N et al. (2018) Resistance Exercise's Ability to Reverse Cancer-Induced Anabolic Resistance. Exerc Sport Sci Rev 46:247-253
Eberth, Jan M; Thibault, Annie; Caldwell, Renay et al. (2018) A statewide program providing colorectal cancer screening to the uninsured of South Carolina. Cancer 124:1912-1920
Mentrup, Heather L; Hartman, Amanda; Thames, Elizabeth L et al. (2018) The ubiquitin ligase ITCH coordinates small intestinal epithelial homeostasis by modulating cell proliferation, differentiation, and migration. Differentiation 99:51-61
Oliver, David; Ji, Hao; Liu, Piaomu et al. (2017) Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 7:43023
Alexander, M; Burch, J B; Steck, S E et al. (2017) Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 32:183-192
Zhang, Yu; Davis, Celestia; Shah, Sapana et al. (2017) IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 56:272-287
Gao, Feng J; Shi, Liang; Hines, Timothy et al. (2017) Insulin signaling regulates a functional interaction between adenomatous polyposis coli and cytoplasmic dynein. Mol Biol Cell 28:587-599
Hardee, Justin P; Montalvo, Ryan N; Carson, James A (2017) Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. Oxid Med Cell Longev 2017:8018197
Peña, Edsel A; Wu, Wensong; Piegorsch, Walter et al. (2017) Model Selection and Estimation with Quantal-Response Data in Benchmark Risk Assessment. Risk Anal 37:716-732

Showing the most recent 10 out of 140 publications