This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Corneal epithelial wound healing and homeostasis is regulated by EGFR activity. This process is mediated by three cellular changes: cell migration, proliferation, and stratification. Inhibition of ligand-stimulated EGFR activation, either through small molecule inhibitors or blocking antibodies, results in a decrease in all three cellular changes as well as impaired wound healing. Based on our own findings and the work of others, we hypothesize that corneal wound healing can be enhanced by promoting EGFR-mediated signals that enhance cell migration. To test this hypothesis, we must understand EGFR-mediated signaling on the molecular and cellular level. This information will be used to target molecules and mechanisms that promote epithelial cell migration, which can ultimately accelerate coverage of the damaged area and healing of the wounded cornea. In the first aim of this proposal, we will study other endogenous EGFR ligands that have been reported to be more potent activators of corneal wound healing. We hypothesize that these ligands promote different endocytic trafficking itineraries of the EGFR than EGF (i.e. recycling rather than degradation) and this is the basis of their enhance wound healing. In the second aim, we will disrupt EGFR endocytic trafficking at discrete stages along the endocytic pathway and assess the magnitude and duration of the EGFR phosphorylation, effector signaling, and cell physiology. These findings will indicate whether enrichment of the activated receptor at discrete endocytic location will specifically promote the molecular and cellular events associated with corneal wound healing.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017703-08
Application #
7959981
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
8
Fiscal Year
2009
Total Cost
$106,026
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Bhatti, Faizah; Kung, Johannes W; Vieira, Frederico (2018) Retinal degeneration mutation in Sftpa1tm1Kor/J and Sftpd -/- targeted mice. PLoS One 13:e0199824
Vieira, Frederico; Kung, Johannes W; Bhatti, Faizah (2017) Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann Anat 211:184-201
Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena et al. (2016) Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress. J Neurochem 136:931-46
Stiles, Megan; Qi, Hui; Sun, Eleanor et al. (2016) Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res 57:818-31
Bennett, Lea D; Anderson, Robert E (2016) Current Progress in Deciphering Importance of VLC-PUFA in the Retina. Adv Exp Med Biol 854:145-51
Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei et al. (2016) The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility. J Biol Chem 291:8721-34
Ma, Hongwei; Ding, Xi-Qin (2016) Thyroid Hormone Signaling and Cone Photoreceptor Viability. Adv Exp Med Biol 854:613-8
Cai, Xue; Chen, Lijuan; McGinnis, James F (2015) Correlation of ER stress and retinal degeneration in tubby mice. Exp Eye Res 140:130-138
Bhatti, Faizah; Ball, Genevieve; Hobbs, Ronald et al. (2015) Pulmonary surfactant protein a is expressed in mouse retina by Müller cells and impacts neovascularization in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 56:232-42
Ding, Xi-Qin; Matveev, Alexander; Singh, Anil et al. (2014) Exploration of cone cyclic nucleotide-gated channel-interacting proteins using affinity purification and mass spectrometry. Adv Exp Med Biol 801:57-65

Showing the most recent 10 out of 245 publications