This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.A reliable method to characterize glycoproteins is needed, particularly when they are used as pharmaceuticals, to assure that drugs are safe and effective. Yet characterization is time-consuming, and sometimes impossible, using the current technologies. This is because current protocols involve cleaving the carbohydrate from the protein and characterizing the two entities separately. Thus, when multiple glycosylation sites are present, this process leads to ambiguous results, as it is unclear which carbohydrates came from which glycosylation site. This is a critical obstacle in studying the glycoprotein hormones hCG, hLH, hFSH, and hTSH, all of which have multiple glycosylation sites. To improve upon current characterization methods, we are using a combination of proteolytic digestions to produce glycopeptides, followed by analysis of the glycopeptides by various mass spectrometric methods. The methods include precursor and product ion scanning, MSn experiments, metal-derivatization strategies, and possibly, on-line separation/detection methods. In addition, we are building computer algorithms to simplify the interpretation of the spectra. The expected outcome of the research will be an effective strategy to characterize glycoproteins with multiple glycosylation sites present.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR017708-06A1
Application #
7720670
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2008-05-15
Project End
2009-03-31
Budget Start
2008-05-15
Budget End
2009-03-31
Support Year
6
Fiscal Year
2008
Total Cost
$48,157
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob et al. (2018) Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 90:2918-2925
Jeanne Dit Fouque, Kevin; Garabedian, Alyssa; Porter, Jacob et al. (2017) Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 89:11787-11794
Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D et al. (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92-104
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
McNiff, Michaela L; Chadwick, Jennifer S (2017) Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 30:467-475
Budiardjo, S Jimmy; Licknack, Timothy J; Cory, Michael B et al. (2016) Full and Partial Agonism of a Designed Enzyme Switch. ACS Synth Biol 5:1475-1484
O'Neil, Pierce; Lovell, Scott; Mehzabeen, Nurjahan et al. (2016) Crystal structure of histone-like protein from Streptococcus mutans refined to 1.9?Å resolution. Acta Crystallogr F Struct Biol Commun 72:257-62
Gowthaman, Ragul; Miller, Sven A; Rogers, Steven et al. (2016) DARC: Mapping Surface Topography by Ray-Casting for Effective Virtual Screening at Protein Interaction Sites. J Med Chem 59:4152-70
Kumar, Ritesh; Qi, Yifei; Matsumura, Hirotoshi et al. (2016) Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein. Biochemistry 55:2622-31
Meekins, David A; Zhang, Xin; Battaile, Kevin P et al. (2016) 1.45?Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae. Acta Crystallogr F Struct Biol Commun 72:853-862

Showing the most recent 10 out of 256 publications