This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal of this work is to determine the molecular details of DNA structure regulation and as a result to understand why mutations in human proteins responsible for this regulation result in the development of cancer. The information obtained from this project will be useful in the development of drugs which will specifically prevent these proteins from malfunctioning and thereby causing disease. The long-term goal of this research is to obtain a quantitative molecular understanding of the mechanism(s) of ATP-dependent chromatin regulation in Eukaryotes. The specific objective of this proposed project is the quantitative characterization of the kinetics of ATP-dependent DNA translocation by the RSC chromatin remodeling enzyme from S. cerevisiae. Even though several proposed models of ATP-dependent chromatin remodeling require that the remodeling enzyme translocate along DNA, there has not yet been a complete and quantitative kinetic study of the DNA translocation mechanism of any remodeling enzyme. My proposed novel studies will provide considerable insight into the behavior of RSC other chromatin remodeling complexes. The DNA translocation activity of RSC will be primarily monitored through measurements of the DNA-stimulated ATPase activity of the enzyme using standard radioactivity-based assays. As demonstrated in our preliminary results, we can analyze the time course of this ATPase activity to determine potential kinetic models of DNA translocation and estimates of the associated processivities. Further refinement of these models, including estimates of additional kinetic parameters, will be accomplished through analysis of DNA translocation time courses obtained using well-established stopped-flow fluorescence-based assays. In these experiments the position of the translocating protein on the DNA is inferred from changes in the fluorescence of fluorophores attached to the DNA resulting from interaction with the translocating protein. Taken together, these data will also allow for the calculation of the thermodynamic efficiency (ATP coupling stoichiometry) of the molecular motor driving RSC translocation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017708-07
Application #
7959517
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2009-04-01
Project End
2010-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
7
Fiscal Year
2009
Total Cost
$141,152
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob et al. (2018) Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 90:2918-2925
Jeanne Dit Fouque, Kevin; Garabedian, Alyssa; Porter, Jacob et al. (2017) Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 89:11787-11794
Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D et al. (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92-104
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
McNiff, Michaela L; Chadwick, Jennifer S (2017) Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 30:467-475
Johnson, Troy A; Mcleod, Matthew J; Holyoak, Todd (2016) Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 55:575-87
Tucker, Jenifer K; McNiff, Michaela L; Ulapane, Sasanka B et al. (2016) Mechanistic investigations of matrix metalloproteinase-8 inhibition by metal abstraction peptide. Biointerphases 11:021006
Yadav, Rahul; Vattepu, Ravi; Beck, Moriah R (2016) Phosphoinositide Binding Inhibits Actin Crosslinking and Polymerization by Palladin. J Mol Biol 428:4031-4047
Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G et al. (2016) Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J 473:383-96
Budiardjo, S Jimmy; Licknack, Timothy J; Cory, Michael B et al. (2016) Full and Partial Agonism of a Designed Enzyme Switch. ACS Synth Biol 5:1475-1484

Showing the most recent 10 out of 256 publications