This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Organisms causative of diseases such as respiratory tract infections (Haemophilus influenzae), enteric conditions (Shigella dysenteriae) and the opportunistic Pseudomonas aeruginosa have developed sophisticated mechanisms for sequestering iron from their host. This intense competition between invading pathogens and their host for the nutrient has led to the idea that new antimicrobials may target iron acquisition and homeostasis. To study this idea more closely, it is important to gain molecular-level understanding of the mechanisms by which pathogens manage iron, from acquisition and internalization to storage and utilization. Significant advances have improved our understanding of iron uptake by P. aeruginosa and many other pathogens. In comparison, little is known about the fate of internalized iron. One mechanism whereby iron toxicity is controlled is by storage of iron in ferritin and bacterioferritin, which are large proteins capable of storing up to 4,000 iron atoms in their internal cavities. Despite the importance of ferritins and bacterioferritins in regulating iron concentrations and preventing its toxic effects, little is known about the processes that deliver Fe2+ for storage or the signals that prompt its release for safe integration in metabolism. We have recently demonstrated that mobilization of Fe2+ from bacterioferritin A (BfrA) in P. aeruginosa requires electron transfer from a ferredoxin reductase (FPR). Thus the BfrA-FPR complex is an unprecedented opportunity to investigate how bacterioferritins recognize their physiological regulators and if binding modulates the dynamic properties of the bacterioferritin to facilitate iron release. To fill these gaps we plan to: (1) Investigate the dynamic properties of BfrA utilizing a strategy specifically tailored to study large proteins using hydrogen/deuterium H/D exchange coupled to NMR spectroscopy. (2) Investigate the dynamic properties of BfrA with the aid of computational methods and (3) Utilize computational and HD/NMR methods to investigate how BfrA binds to FPR and determine the effect that the inter-protein association exerts on the dynamic properties of BfrA.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Exploratory Grants (P20)
Project #
Application #
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas Lawrence
Schools of Pharmacy
United States
Zip Code
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob et al. (2018) Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 90:2918-2925
Jeanne Dit Fouque, Kevin; Garabedian, Alyssa; Porter, Jacob et al. (2017) Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 89:11787-11794
Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D et al. (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92-104
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
McNiff, Michaela L; Chadwick, Jennifer S (2017) Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 30:467-475
McNiff, M L; Haynes, E P; Dixit, N et al. (2016) Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli. Protein Expr Purif 122:64-71
Johnson, Troy A; Mcleod, Matthew J; Holyoak, Todd (2016) Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 55:575-87
Tucker, Jenifer K; McNiff, Michaela L; Ulapane, Sasanka B et al. (2016) Mechanistic investigations of matrix metalloproteinase-8 inhibition by metal abstraction peptide. Biointerphases 11:021006
Yadav, Rahul; Vattepu, Ravi; Beck, Moriah R (2016) Phosphoinositide Binding Inhibits Actin Crosslinking and Polymerization by Palladin. J Mol Biol 428:4031-4047
Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G et al. (2016) Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J 473:383-96

Showing the most recent 10 out of 256 publications