This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Conditions leading to immune compromise in the host shift the balance between host and pathogen, making certain populations particularly susceptible to infectious diseases with accelerated rates of mortality and morbidity. The neonate is one such host. The protective intrauterine environment makes a robust immune defense unnecessary. However, the dramatic physiologic and environmental changes that occur at birth require adaptation in every fetal system, including immunity. Although even the full term infant requires months to fully develop the robust host defenses of older children, the preterm infant has additional challenges. These infants are vulnerable to infection due to impairment in both humoral and cellular immunity. Importantly, similar vulnerabilities are seen in some adult populations as well. Immune compromise occurs in such diverse settings as blood and solid organ malignancies, HIV/AIDS, and burn patients. Therefore, we believe that identification of the host factors in the premature neonate contributing to its susceptibility to infection will also inform the mechanisms of vulnerability in other immune compromised populations. We have generated and characterized monoclonal antibody fragments specific to the hyphae of C. albicans, a growth morphology associated with virulence.
Specific Aim 1 will further define the hyphal antigens that are recognized by these antibody fragments through cDNA library screening. We will also examine the role of these antigens in virulence of the organism by constructing mutants for these genes and examining their phenotype in a murine neonatal model of candidiasis.
Specific Aim 2 will express these antibody fragments in the context of bonafide human IgG and test these monoclonal antibodies for their ability to be protective against disseminated disease in the neonatal candidiasis model.
Specific Aim 3 will take advantage of a unique susceptibility of neonates to infection with another Candida species, C. parapsilosis, to better define the response of neutrophils to a fungal pathogen. Neutrophils are known to be key effector cells in anti-fungal host defense, and have recently been shown to have a robust transcriptional response to infectious agents. We will use microarray technology to characterize the differences in response to this fungus between premature neutrophils and those from adults, in order to better understand the deficiencies that lead to susceptibility. Relevance: People who have weakened immune systems are increasing in number, leading to increases in serious infections. Understanding the specific mechanisms in the microbe and in the immune system that lead to these infections will enable the design of strategies to improve the immune system and better protect these patients from life-threatening disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018728-07
Application #
7960415
Study Section
Special Emphasis Panel (ZRR1-RI-6 (01))
Project Start
2009-08-01
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
7
Fiscal Year
2009
Total Cost
$270,426
Indirect Cost
Name
Women and Infants Hospital-Rhode Island
Department
Type
DUNS #
069851913
City
Providence
State
RI
Country
United States
Zip Code
02905
Wang, Ailin; Conicella, Alexander E; Schmidt, Hermann Broder et al. (2018) A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37:
Chen, Xiaodi; Hovanesian, Virginia; Naqvi, Syed et al. (2018) Systemic infusions of anti-interleukin-1? neutralizing antibodies reduce short-term brain injury after cerebral ischemia in the ovine fetus. Brain Behav Immun 67:24-35
Janke, Abigail M; Seo, Da Hee; Rahmanian, Vahid et al. (2018) Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment. Biochemistry 57:2549-2563
Lange, P T; Schorl, C; Sahoo, D et al. (2018) Liver X Receptors Suppress Activity of Cholesterol and Fatty Acid Synthesis Pathways To Oppose Gammaherpesvirus Replication. MBio 9:
Ribeiro, Jennifer R; Gaudet, Hilary M; Khan, Mehreen et al. (2017) Human Epididymis Protein 4 Promotes Events Associated with Metastatic Ovarian Cancer via Regulation of the Extracelluar Matrix. Front Oncol 7:332
Kao, Hung-Teh; Ryoo, Kanghyun; Lin, Albert et al. (2017) Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 45:1085-1101
Patra, Aparna; Chen, Xiaodi; Sadowska, Grazyna B et al. (2017) Neutralizing anti-interleukin-1? antibodies reduce ischemia-related interleukin-1? transport across the blood-brain barrier in fetal sheep. Neuroscience 346:113-125
Kalkunte, Satyan; Huang, Zheping; Lippe, Eliana et al. (2017) Polychlorinated biphenyls target Notch/Dll and VEGF R2 in the mouse placenta and human trophoblast cell lines for their anti-angiogenic effects. Sci Rep 7:39885
Taggart, Allison J; Lin, Chien-Ling; Shrestha, Barsha et al. (2017) Large-scale analysis of branchpoint usage across species and cell lines. Genome Res 27:639-649
Spasova, Mariya S; Chen, Xiaodi; Sadowska, Grazyna B et al. (2017) Ischemia reduces inter-alpha inhibitor proteins in the brain of the ovine fetus. Dev Neurobiol 77:726-737

Showing the most recent 10 out of 170 publications