This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Microbial colonization of exposed tooth surfaces (enamel and cementum) in the oral cavity has been demonstrated to be associated with biofilm formation and subsequent periodontal disease or dental caries. Studies have demonstrated that tooth surfaces and the surfaces of certain dental biomaterials that have higher surface roughness values have increased microbial attachment and adhesion in comparison with similar substrates that have been polished or glazed. However, initial investigations into the reduction of surface roughness or incorporation of antibacterial monomers in polymer-based restorative biomaterials have had limited success in reducing biofilm formation. The overall goal of this project is to determine the utility of selected topographical and physical properties as predictors of in vitro biofilm formation by Streptococcus mutans and by Streptococcus gordonii.
The specific aims of this investigation are: 1) to characterize selected topographical and physical properties of tooth and restorative biomaterial surfaces and to measure biofilm accumulations of S. mutans and S. gordonfi on those surfaces, and 2) to quantify the effect of laser, chemical and mechanical treatments of tooth and restorative biomaterial surfaces on selected topographical and physical properties and S. mutans and S. gordonfi biofilm accumulation. The studies comprising this project will utilize atomic force microscopy to obtain non-destructive 3-dimensional topographical and nanohardness characteristics of the surfaces tested. A contact angle goniometer will be used to measure the surface energy and wettability/hydrophobicity of the substrates, and a confocal laser scanning microscope will be used to quantify the biofilms formed in an in vitro batch culture apparatus. It is hypothesized that accurate characterization of the topography of natural and synthetic dental substrates will provide significant fundamental information on the role of those surfaces in biofilm development, particularly in the proximity of restorations. The knowledge gained from this project will also be useful in the modification of the topography of existing dental restorative materials and periodontal treatments, or in the formulation of guidelines for new restorative materials and treatments. In the long-term, this knowledge could help to reduce the incidence of disease connected with biofilm formation, thereby realizing substantial cost savings and improved oral care for dental patients.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018741-05
Application #
7610545
Study Section
Special Emphasis Panel (ZRR1-RI-3 (01))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
5
Fiscal Year
2007
Total Cost
$223,781
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Liu, Jinman; Wu, Chenggang; Huang, I-Hsiu et al. (2011) Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology 157:2433-44
Wu, Chenggang; Ayala, Eduardo A; Downey, Jennifer S et al. (2010) Regulation of ciaXRH operon expression and identification of the CiaR regulon in Streptococcus mutans. J Bacteriol 192:4669-79
Wu, Chenggang; Cichewicz, Robert; Li, Yihong et al. (2010) Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol 76:5815-26
Okinaga, T; Xie, Z; Niu, G et al. (2010) Examination of the hdrRM regulon yields insight into the competence system of Streptococcus mutans. Mol Oral Microbiol 25:165-77
Niu, Guoqing; Okinaga, Toshinori; Qi, Fengxia et al. (2010) The Streptococcus mutans IrvR repressor is a CI-like regulator that functions through autocleavage and Clp-dependent proteolysis. J Bacteriol 192:1586-95
Xie, Zhoujie; Okinaga, Toshinori; Niu, Guoqing et al. (2010) Identification of a novel bacteriocin regulatory system in Streptococcus mutans. Mol Microbiol 78:1431-47
Okinaga, Toshinori; Niu, Guoqing; Xie, Zhoujie et al. (2010) The hdrRM operon of Streptococcus mutans encodes a novel regulatory system for coordinated competence development and bacteriocin production. J Bacteriol 192:1844-52
Kreth, Jens; Merritt, Justin; Qi, Fengxia (2009) Bacterial and host interactions of oral streptococci. DNA Cell Biol 28:397-403
Nguyen, Trang; Zhang, Zhijun; Huang, I-Hsiu et al. (2009) Genes involved in the repression of mutacin I production in Streptococcus mutans. Microbiology 155:551-6
Merritt, Justin; Niu, Guoqing; Okinaga, Toshinori et al. (2009) Autoaggregation response of Fusobacterium nucleatum. Appl Environ Microbiol 75:7725-33

Showing the most recent 10 out of 21 publications