This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Marrow stem cells have recently been shown capable of differentiating into a number of nonhematopoietic cell types in different tissues including cardiac myocytes, hepatocytes, neuronal cells, epithelial cells, vascular endothelial cells, cartilage and bone. Conversion of green-fluorescent protein (GFP) positive marrow cells to skeletal muscle cells has also been demonstrated and is the focus of this project. We have determined that donor GFP+ marrow cells have converted to muscle cells by colocalizing GFP and desmin in morphologically characteristic muscle fibers. We have found increasing levels of marrow conversion or transdifferentiation to skeletal muscle cells by altering the specifics of the transplant regimen including cell number, timing of transplant and mode of cell delivery (i.e. local injection vs systemic infusion or mobilization of transplanted cells). We have also found that the number of conversion events changes with different mobilization regimens and that subsets of marrow cells, i.e. Dexter culture adherent cells and especially lineage negative cells, give higher rates of conversion than unseparated marrow cells. The nature of the skeletal muscle injury, radiation or direct cardiotoxin injection, is also critical in determining the level of transidfferentiation of marrow to muscle cells seen in vivo. The relevance of these studies to possible clinical application depends upon the 'robustness' of the conversions. In settings without injury or in some of our experimental models the levels of conversion have been quite low, at the 0.01% level. However, in preliminary studies using a cardiotoxin muscle injury in previously transplanted mice, combined with radiation and direct injection of different populations of marrow cells we have obtained conversion rates up to12%, i.e. 12% of the muscle fibers were GFP+ skeletal muscle cells. This, to our knowledge, is the highest rate of marrow conversion to muscle cells in the published literature, and can be considered as relatively 'robust' and a major step to clinically significant 'robustness'. In these same studies, we have also observed, for the first time, colonies of GFP+ muscle cells in the anterior tibialis muscle. Our present proposal is to continue to evaluate the specifics of muscle injury which will lead to high-level conversion of marrow to muscle and to explore which particular cell type can give rise to muscle at the highest frequency, the timing of transplant suitable for such conversions and the number of cells necessary to obtain significant muscle conversion. We will also test the effect of different 'muscle active' cytokines (HGF, LIF, FGF6, and IGF1 ) on the differentiation of marrow to muscle cells. We will then apply our optimized system to relevant models of muscular dystrophy in mice. We are also particularly interested in the possibility that work in project three on siRNA may open up possibilities blocking specific hematopoietic stem cell differentiation pathways and diverting them to a myogneic pathway. Thus we plan to work with project 1 on PU. 1 blockade and its effect of marrow to muscle conversions. As this work proceeds we would of course evaluate other transcriptional regulatory blockades. The knowledge gained in this grant can be applied for the development of clinical protocols for treatment of muscular dystrophy and other genetic diseases.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018757-04
Application #
7382033
Study Section
Special Emphasis Panel (ZRR1-RI-3 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
4
Fiscal Year
2006
Total Cost
$193,232
Indirect Cost
Name
Roger Williams Hospital
Department
Type
DUNS #
625899281
City
Providence
State
RI
Country
United States
Zip Code
02908
Kim, Joseph W; Vang, Souriya; Luo, John Zq et al. (2017) Effects of bone marrow on the microenvironment of the human pancreatic islet: A Protein Profile Approach. Mol Cell Endocrinol 450:32-42
Luo, John Z Q; Kim, Joseph W; Luo, LuGuang (2016) EFFECTS OF GINSENG AND ITS FOUR PURIFED GINSENOSIDES (Rb2, Re, Rg1, Rd) ON HUMAN PANCREATIC ISLET ? CELL IN VITRO. Eur J Pharm Med Res 3:110-119
Tang, Jin Bo; Wu, Ya Fang; Cao, Yi et al. (2016) Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons. Sci Rep 6:20643
Kim, Joseph W; Luo, John Z; Luo, Luguang (2015) The Biochemical Cascades of the Human Pancreatic ?-Cells: The Role of MicroRNAs. J Bioanal Biomed 7:
Luo, Lu Guang; Xiong, Fang; Ravassard, Philippe et al. (2015) Human Bone Marrow Subpopulations Sustain Human Islet Function and Viability In vitro. Br J Med Med Res 8:576-587
Ilgun, Handenur; Kim, Joseph William; Luo, LuGuang (2015) Adult Stem Cells and Diabetes Therapy. J Stem Cell Res Transplant 2:
Bartos, Adrian; Dubielecka, Patrycja M (2014) The emerging role of Bcr-Abl-induced cystoskeletal remodeling in systemic persistence of leukemic stem cells. Curr Drug Deliv 11:582-91
Chorzalska, A; Dubielecka, P M (2014) New Abelson interactor-1 (Abi-1)-driven mechanism of acquired drug resistance. Leuk Suppl 3:S7-8
Chorzalska, A; Salloum, I; Shafqat, H et al. (2014) Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl-induced leukemia. Leukemia 28:2165-77
Dabiri, Ganary; Falanga, Vincent (2013) Connective tissue ulcers. J Tissue Viability 22:92-102

Showing the most recent 10 out of 90 publications