This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Dr. Ashleigh Boyd, PhD, joined the COBRE on January 15th, 2010 and formally replaced Dr. Abedi, who left the institution to join the faculty at the University of California at Davis. The project left by Dr. Abedi was handled by the PI of the COBRE, Vincent Falanga, MD, until Dr. Boyd joined the COBRE. As stated, Dr. Boyd took over this project in January of 2010. She has been evaluated by the External Advisory Committee (EAC) during our meeting with the EAC right after she joined the COBRE. The progress of the project is what has been accomplished thus far, under the leadership of Dr. Abedi and, after he left to join the U. California at Davis, by the supervision of Dr. Falanga, PI of the COBRE, and now Dr. Boyd, the new project leader. With regard to the project leader (Dr. Abedi) whom the new project leader (Dr. Ashleigh Boyd) replaced, there was no change in the scope of the original project. The project remained focused on tissue repair, with a particular emphasis on fibrosis. The project leader, Dr. Abedi, left the institution for a major promotion and to be on the faculty at the University of California at Davis. In the interim period, the PI of the COBRE, Dr. Vincent Falanga, took over the responsibility of maintaining this project at a high level of productivity in terms of progress and scienfic fundings, without a change in scope. Subsquently, the NIH was properly notified of the change in project leader. A new project leader (Ashleigh Boyd, PhD) was recruited from Oxford University and has now taken over the project. Dr. Boyd is both an immunologist and a stem cell investigator, and thus brings new ideas to the project. For now, however, no change in hypothesis and specific aims have been made. Below is a narrative of the original project description. Excessive fibrosis is the prominent histological features of many human systemic diseases such as idiopathic and secondary pulmonary fibrosis, myelofibrosis, endomyocardial fibrosis, sclerosing cholangitis, hepatic fibrosis, cirrohsis and fibrous thyroiditis. Another important dimension is the fibrosis that occurs with tumors. Overall, the fibrosis in many conditions results in a severe, and in most cases, irreversible loss of organ function. The fatal outcome of many of these conditions can be directly attributed to the fibrotic process. Recent data has suggested that marrow derived cells can significantly contribute to the fibroblasts both in normal regeneration process and also in excessive fibrosis in pathological conditions. Many of the investigators believe that the stromal component of the marrow is responsible for these marrow derived fibroblasts. However our recent data shows that cells with hematopoietic characteristics are able to produce fibroblasts in the injured skin. Our hypothesis is that fibroblasts in the scar tissue and also in skin models of excessive fibrosis are originate from the hematopoietic component of bone marrow. The current study will be undertaken to investigate whether the increase in fibroblasts at the site of pathogenic fibrosis originated from transplanted hematopoietic donor cells or they are mostly coming from the residing fibroblasts in the adjacent tissue. We are also planning to establish a hierarchical model of differentiation for tissue fibroblast by identifying differentiation markers from marrow stem cells to fully differentiated fibroblasts. We have proposed the following specific aims for this project: 1) To characterize a specific subgroup of marrow cells that is able to contribute to tissue fibroblasts in the scar tissue. To induce fibrosis, we will use three well defined model of tissue fibrosis, ie. bleomycin injury, graft versus host disease, and TSK mice;2) To characterize the role of marrow derived fibroblasts in comparison to their endogenous counterparts in each specific model of tissue fibrosis. We will determine whether marrow derived fibroblasts, both quantitatively and qualitatively, contribute to the fibrosis process. A main component of the proposed work is that FSP1-GFP, ColA2-LacZ mice will be used as functional models to identify the differentiation of marrow cells to fibroblasts. 3) To identify the developmental steps in the process of differentiation of bone marrow derived fibroblasts. Donor derived fibroblast cells residing in the recipient scar tissue will be isolated and analyzed by gene microarray and the results will be compared to the marrow cells from which they were derived and also de novo fibroblasts from the same scar. The genes identified by this method will be confirmed with a combination of real time-PCR, immunofluorescent and flow cytometry techniques, the progeny and lineages of these cells. Emphasis will be placed on establishing an immunophenotypic profile for marrow derived fibroblasts. The progressive loss/addition of cell surface markers during fibroblast maturation will be monitored, as it is done with the step-wise maturation of other populations of marrow cells, such as B or T lymphocytes. 4) The role of marrow derived fibroblasts in the fibrosis observed in tumors. During tenure of this grant we plan to look very early on tumors from lung, melanoma, and lymph nodes.
Showing the most recent 10 out of 90 publications