This proposal for a Center for Biomedical Research Excellence (COBRE) originates from the Oklahoma Medical Research Foundation (OMRF). It includes key collaborations with the adjacent University of Oklahoma Health Sciences Center (OUHSC) in Oklahoma City and with the main campus of the University of Oklahoma (UO), located 20 miles south of Oklahoma City in Norman. The scientific theme is the role of glycosylation in host defense. Virtually all membrane and secreted proteins undergo post-translational modifications, particularly glycosylation. Yet the functions of these extremely diverse modifications remain poorly understood. Oklahoma has developed major strengths in this area. The proposal aims to build on these strengths by interfacing glycobiology with existing and emerging expertise in cardiovascular biology, bioengineering, and immunology. This interdisciplinary approach centers on active participation of productive, senior investigators in mentoring a group of promising junior investigators. New Core facilities will further enhance their research. The success of these junior investigators will enlarge the critical mass of talent in overlapping scientific areas, a synergistic method to expand the biomedical research infrastructure in Oklahoma.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018758-05
Application #
7248029
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Program Officer
Canto, Maria Teresa
Project Start
2003-09-01
Project End
2009-03-30
Budget Start
2007-07-01
Budget End
2009-03-30
Support Year
5
Fiscal Year
2007
Total Cost
$1,897,690
Indirect Cost
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Dong, Jerry; Saunders, Debra; Silasi-Mansat, Robert et al. (2018) Therapeutic efficacy of a synthetic epsin mimetic peptide in glioma tumor model: uncovering multiple mechanisms beyond the VEGF-associated tumor angiogenesis. J Neurooncol 138:17-27
Donovan, Elise L; Lopes, Erika Barboza Prado; Batushansky, Albert et al. (2018) Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice. Dis Model Mech 11:
Keshari, Ravi S; Silasi, Robert; Lupu, Cristina et al. (2017) In vivo-generated thrombin and plasmin do not activate the complement system in baboons. Blood 130:2678-2681
Dong, Yunzhou; Fernandes, Conrad; Liu, Yanjun et al. (2017) Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diab Vasc Dis Res 14:14-23
Barboza, Erika; Hudson, Joanna; Chang, Wan-Pin et al. (2017) Profibrotic Infrapatellar Fat Pad Remodeling Without M1 Macrophage Polarization Precedes Knee Osteoarthritis in Mice With Diet-Induced Obesity. Arthritis Rheumatol 69:1221-1232
Bergstrom, K; Fu, J; Johansson, M E V et al. (2017) Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol 10:91-103
Fu, Yao; Huebner, Janet L; Kraus, Virginia B et al. (2016) Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats. J Gerontol A Biol Sci Med Sci 71:1131-40
Rahman, H N Ashiqur; Wu, Hao; Dong, Yunzhou et al. (2016) Selective Targeting of a Novel Epsin-VEGFR2 Interaction Promotes VEGF-Mediated Angiogenesis. Circ Res 118:957-969
Fu, Yao; Kinter, Michael; Hudson, Joanna et al. (2016) Aging Promotes Sirtuin 3-Dependent Cartilage Superoxide Dismutase 2 Acetylation and Osteoarthritis. Arthritis Rheumatol 68:1887-98
Griffin, Timothy M; Humphries, Kenneth M; Kinter, Michael et al. (2016) Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 124:74-83

Showing the most recent 10 out of 66 publications