This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Malnutrition remains a worldwide problem in developing countries. In developed countries, many medical conditions, ranging from anorexia nervosa to Crohn's disease, result in severe growth impairment in children. The objective of this study is to identify mechanisms by which nutrient availability, specifically leucine which is the most abundant essential amino acids, affects chondrocyte proliferation, differentiation, deposition of extracellular matrix (ECM) and their interactions. It has long been known that nutritional status effect linear growth by modulating GH/IGF-I axis. Recently signaling mechanism by which nutrients directly regulate cells via mammalian Target Of Rapamycin (mTOR) has been elucidated. We hypothesize that leucine directly regulates chondrogenesis directly by affecting chondrocyte proliferation, differentiation and ECM deposition, 3 key components of bone growth. Our hypothesis is based on our observations. First, mTOR directly regulates chondrogenesis. MTOR inhibition results in decreased expression of Indian hedgehog (Ihh), a key regulator of chondrogenesis. Decreased Ihh could be central to mTOR action. Regulation of Ihh by mTOR is a new observation. Second, leucine restriction and mTOR inhibition result in significant reduction of ECM mRNA expression likely via miRNA regulation. Lastly, we utilized an ex vivo metatarsal explant system to demonstrate the physiological relevance of observations we made in the chondrogenic ATDC5 cell line. Based on our preliminary findings, we propose the following specific aims.
Specific Aim 1 : Identify the molecular mechanisms that mediate the effect of mTOR inhibition and leucine restriction on Ihh regulation and, as a consequence, chondrocyte growth and differentiation. .
Specific Aim 2 : Determine the effect of mTOR inhibition and leucine restriction on miRNA-29 regulation resulting in altered ECM expression and functional role in chondrocyte growth and differentiation Specific Aim 3: Utilizing a fetal metatarsal explant model, we will study the effect of mTOR inhibition and leucine restriction on bone growth, growth plate dynamics and chondrogenic markers, in particular Ihh and miRNA-29. We will study the effect of restoring Ihh and miRNA-29 expression in bones subjected to mTOR inhibition and leucine restriction. Understanding the direct effect of nutrients on bone growth may lead to a better understanding of long term bone health as well as management of the impaired growth in nutrient restriction or related medical conditions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR024484-04
Application #
8168036
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
4
Fiscal Year
2010
Total Cost
$196,175
Indirect Cost
Name
Rhode Island Hospital
Department
Type
DUNS #
075710996
City
Providence
State
RI
Country
United States
Zip Code
02903
Gil, Joseph A; Chambers, Alison; Shah, Kalpit N et al. (2018) A Biomechanical Evaluation of a 2-Suture Anchor Repair Technique for Thumb Metacarpophalangeal Joint Ulnar Collateral Ligament Injuries. Hand (N Y) 13:581-585
Nacca, Christopher; Gil, Joseph A; Badida, Rohit et al. (2018) Critical Glenoid Bone Loss in Posterior Shoulder Instability. Am J Sports Med 46:1058-1063
Mansuripur, P Kaveh; Gil, Joseph A; Cassidy, Dale et al. (2018) Fixation Strength in Full and Limited Fixation of Osteoporotic Distal Radius Fractures. Hand (N Y) 13:461-465
Larson, K M; Zhang, L; Badger, G J et al. (2017) Early genetic restoration of lubricin expression in transgenic mice mitigates chondrocyte peroxynitrite release and caspase-3 activation. Osteoarthritis Cartilage 25:1488-1495
Gil, Joseph A; Ebert, Kerry; Blanchard, Keri et al. (2017) Efficacy of a radial-based thumb metacarpophalangeal-stabilizing orthosis for protecting the thumb metacarpophalangeal joint ulnar collateral ligament. J Hand Ther :
Li, Pengcui; Deng, Jin; Wei, Xiaochun et al. (2016) Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1? and MMP-13. Mol Med Rep 14:1475-82
Proffen, Benedikt L; Sieker, Jakob T; Murray, Martha M et al. (2016) Extracellular matrix-blood composite injection reduces post-traumatic osteoarthritis after anterior cruciate ligament injury in the rat. J Orthop Res 34:995-1003
Teeple, Erin; Karamchedu, Naga Padmini; Larson, Katherine M et al. (2016) Arthroscopic irrigation of the bovine stifle joint increases cartilage surface friction and decreases superficial zone lubricin. J Biomech 49:3106-3110
Chin, K E; Karamchedu, N P; Patel, T K et al. (2016) Comparison of micro-CT post-processing methods for evaluating the trabecular bone volume fraction in a rat ACL-transection model. J Biomech 49:3559-3563
Got, C; Vopat, B G; Mansuripur, P K et al. (2016) The effects of partial carpal fusions on wrist range of motion. J Hand Surg Eur Vol 41:479-83

Showing the most recent 10 out of 80 publications