Cognition in aging and neurodegenerative diseases reflects the net effect of multiple pathological, neuroplastic, and brain reserve processes. Penn's P30 Alzheimer's Disease Core Center (ADCC) is the foundation for many interactive clinical and basic research programs on AD and related disorders at Penn and beyond that investigate these processes. The Clinical Core's role is to support and promote this research to better characterize mechanisms of disease and resilience in patients and controls, to characterize the ways in which pathology clinically manifests in people over time, and to investigate ways to prevent or treat disease in order to maximize daily function and quality of life of older adults. The Clinical Core's base of operations is the Penn Memory Center (PMC), a multidepartmental clinical and clinical research outpatient center of the University of Pennsylvania Health System, where many of our research participants are recruited. We also have a longstanding research interest and commitment to an underserved Latino minority community through satellite recruitment in primary care practices in North Philadelphia and with the Education Core, we are expanding our outreach in the African American communities of West Philadelphia. The Clinical Core characterizes a longitudinal cohort of people with normal and abnormal brain aging who participate in our ADCC and its affiliated research programs by: a) applying standardized rating scales to measure past and current medical, cognitive, neurological, behavioral, and functional status, b) conducting and monitoring the clinical utility of neuroimaging studies and molecular-biochemical biomarkers for diagnosis, prognosis, and outcome c) establishing reliable and accurate consensus diagnosis, d) meticulously collecting and handling biospecimens, and e) recruiting and enrolling into affiliated research studies. The Clinical Core is the nexus for almost all of the clinical research conducted on AD and related disorders at Penn. It performs critical functions to support the mission of the Penn ADCC to increase the quality and quantity of AD-relevant research at Penn and beyond. Accordingly, it will continue to implement the following three aims:
Aim 1 : To identify, assess, and longitudinally evaluate patients from the earliest symptomatic stage of neurodegenerative dementia as well as individuals with normal cognition, gathering clinical data compliant with the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS), in addition to neuroimaging data, and biological material, including cerebrospinal fluid (CSF), blood, DNA and brain tissue.
Aim 2 : To facilitate the participation of individuals evaluated by the Clinical Core in collaborative research studies, including those of the Alzheimer's Disease Cooperative Study (ADCS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Aim 3 : To integrate the collection and management of data and biological samples with the other cores in a manner that facilitates collaborative studies and sample sharing among the ADCs and other qualified investigators.

Public Health Relevance

AD and other related dementias are among the most common, feared, and costly conditions in later life. The Clinical Core of the Penn ADCC plays a central role in the assessment, diagnosis, research recruitment and longitudinal management of older adults with cognitive decline as well as their comparison to research participants with successful cognitive aging. Through a better understanding of healthy and diseased cognitive aging, we seek to improve the functioning and quality of life of older adults.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG010124-22
Application #
8381243
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
22
Fiscal Year
2012
Total Cost
$730,987
Indirect Cost
$274,120
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C et al. (2018) Measurements of auto-antibodies to ?-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease. J Neurochem 145:489-503
Rey, Nolwen L; George, Sonia; Steiner, Jennifer A et al. (2018) Spread of aggregates after olfactory bulb injection of ?-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 135:65-83
Lee, Edward B (2018) Integrated neurodegenerative disease autopsy diagnosis. Acta Neuropathol 135:643-646
Lewczuk, Piotr; Riederer, Peter; O'Bryant, Sid E et al. (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 19:244-328
Tropea, Thomas F; Chen-Plotkin, Alice S (2018) Unlocking the mystery of biomarkers: A brief introduction, challenges and opportunities in Parkinson Disease. Parkinsonism Relat Disord 46 Suppl 1:S15-S18
Alosco, Michael L; Tripodis, Yorghos; Fritts, Nathan G et al. (2018) Cerebrospinal fluid tau, A?, and sTREM2 in Former National Football League Players: Modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration. Alzheimers Dement 14:1159-1170
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Alcolea, Daniel; Irwin, David J; Illán-Gala, Ignacio et al. (2018) Elevated YKL-40 and low sAPP?:YKL-40 ratio in antemortem cerebrospinal fluid of patients with pathologically confirmed FTLD. J Neurol Neurosurg Psychiatry :
Wenning, Gregor; Trojanowski, John Q; Kaufmann, Horacio et al. (2018) Is multiple system atrophy an infectious disease? Ann Neurol 83:10-12

Showing the most recent 10 out of 720 publications