Core B: Clinical Core Core Leader: David A. Wolk, M.D.; Co-Core Leader: Jason Karlawish, M.D. Project Summary/Abstract The mission of the Penn ADCC Clinical Core is to provide patient data (cognitive, neuroimaging, biofluid, genetic, autopsy) to support the thematic goals of the ADCC and the broader AD research community. A major challenge to developing effective therapeutic interventions for disease modification or symptomatic treatment is the growing understanding that AD is a heterogeneous condition. At least two features characterize this heterogeneity: mixed and multiple pathologies and differential involvement of brain regions or networks. The Penn ADCC views this heterogeneity, as well as the potential shared mechanisms of different proteinopathies and the realization that the antecedents of AD and related disorders occur in preclinical and prodromal stages, as opportunities to enhance precision in prognostication, disease monitoring, and targeting of underlying pathophysiology. As such, the major themes of our ADCC in this renewal are to increase the understanding of (1) the interplay of AD and related disorders pathology in the clinical spectrum of AD, (2) the factors which result in clinical and network level heterogeneity in AD, and (3) the relationship of these phenomena to models of transmissibility. The result will be to increase insight into different AD phenotypes and disease mechanisms through the spectrum of preclinical AD through symptomatic stages. These goals are related to and dependent on our strong tradition of biomarker studies which continue to be a focus for both Core B and the overall ADCC, including development and refinement of these measures and investigation into approaches for their implementation and disclosure in clinical settings. The Clinical Core is highly integrated with the other Penn ADCC Cores and it will work towards achieving the following aims to advance the scientific mission of the Center: (1) To identify and longitudinally evaluate individuals across the continuum of AD and ?normal? cognitive aging, gathering clinical, neuroimaging, and biosample data with an emphasis on heterogeneity in clinical expression, further enhanced by inclusion of the FTLD Module. (2) To collaborate with the Outreach and Recruitment Core to facilitate participation of individuals, with an emphasis on African Americans, in Clinical Core research activities, which will add diversity critical to understanding the influence of comorbid risk factors and genetics on disease expression. (3) To foster integration of Core B activities with the other ADCC Cores, including with the Research Education Component (Core F) to train the next generation of investigators in AD research and with the Data Management, Biostatistics & Bioinformatics Core (Core C) and the Neuropathology, Genetics & Biomarker Core (Core D) to collect and manage clinical data, biomarker studies, and biological samples in a manner that facilitates local, national, and international collaborative studies and sample sharing among NIA-funded ADCs and other qualified investigators through the Administrative Core (Core A). Accomplishment of these goals will catalyze achievement of our broader mission to improve diagnosis and treatment of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG010124-28
Application #
9519733
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
28
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Nativio, Raffaella; Donahue, Greg; Berson, Amit et al. (2018) Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nat Neurosci 21:497-505
Roalf, David R; Rupert, Petra; Mechanic-Hamilton, Dawn et al. (2018) Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease. J Neurol 265:1365-1375
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Irwin, David J; Xie, Sharon X; Coughlin, David et al. (2018) CSF tau and ?-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology 90:e1038-e1046
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C et al. (2018) Measurements of auto-antibodies to ?-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease. J Neurochem 145:489-503
Rey, Nolwen L; George, Sonia; Steiner, Jennifer A et al. (2018) Spread of aggregates after olfactory bulb injection of ?-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 135:65-83
Lee, Edward B (2018) Integrated neurodegenerative disease autopsy diagnosis. Acta Neuropathol 135:643-646
Lewczuk, Piotr; Riederer, Peter; O'Bryant, Sid E et al. (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 19:244-328

Showing the most recent 10 out of 720 publications