Aging and Alzheimer's Disease (AD) are characterized by the accumulation of aberrant proteins and proteins conjugated to ubiquitin. One function of ubiquitin in normal cells is to serve as a molecular marker for the degradation of abnormal or structurally damaged cellular proteins. Thus, one reasonable explanation for the degradation of abnormal or structurally damaged cellular proteins. Thus, one reasonable explanation for the accumulation of ubiquitinated proteins in aged and AD cells is a defect in the proteolytic system normally responsible for their degradation. We have identified and extensively studied a widely distributed protease named the proteasome, that appears to be the protease that degrades ubiquitinated proteins. We have also identified and studied two specific proteasome regulatory proteins that may control its activity in intact cells. The purpose of this work is to test the hypothesis that aging and/or AD cells have a general defect in the process of intracellular protein degradation and that one or more components of the proteasome-catalyzed ubiquitin-dependent proteolytic pathway accounts for this defect. Therefore, we propose to determine whether rates of protein degradation in aged or AD cells in culture are lower than those in young or normal controls. We will also measure the activity of the proteasome system in cell free extracts from these same cells and quantitate level of the various component proteins. These studies should determine whether altered protein degradation is a characteristic of aged or AD cells and identify a possible molecular basis for such a defect.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
3P30AG012300-06S1
Application #
6098583
Study Section
Project Start
1999-08-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
6
Fiscal Year
1999
Total Cost
Indirect Cost
City
Dallas
State
TX
Country
United States
Zip Code
75390
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
LoBue, Christian; Woon, Fu L; Rossetti, Heidi C et al. (2018) Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease. Neuropsychology 32:401-409
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Rosenberg, Roger N; Fu, Min; Lambracht-Washington, Doris (2018) Active full-length DNA A?42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. Alzheimers Res Ther 10:115
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Rosenberg, Roger N; Fu, Min; Lambracht-Washington, Doris (2018) Intradermal active full-length DNA A?42 immunization via electroporation leads to high anti-A? antibody levels in wild-type mice. J Neuroimmunol 322:15-25

Showing the most recent 10 out of 385 publications