The broad objective of the Research Education Component is to enrich and support the training of a diverse group of future research leaders in the study of Alzheimer's Disease (AD)-related disorders and brain aging. We will provide a varied range of experiences and activities so that participants gain an integrated perspective to perform critical and impactful studies of AD, related disorders, and brain aging. Use of an interdisciplinary scientific approach will be emphasized, and key features of sound and effective translational science will be highlighted. This component incorporates continuation of activities that were previously successfully implemented in the Outreach and Recruitment Core (formerly entitled the Education and Information Transfer Core). The plan includes travel awards, ethics training, encouragement of underrepresented minorities, mentoring opportunities, continuing education activities, exposure to scientific and public conferences, and information distribution by referencing the availability of the ADCC's resources and research opportunities. The Research Education Component will train, nurture, and support graduate students, postdoctoral fellows, junior faculty, and research associates by leveraging the interdisciplinary and collaborative nature of faculty in the ADCC and related programs. Opportunities will be provided for maximal career development and growth to lead to research independence.
The Specific Aims of the Research Education Component address the overarching goals to train, enrich, and provide opportunities for participants so that they develop into research leaders in the field of AD, related disorders, and brain aging.
Specific Aim 1 is to provide personalized mentorship and activities geared toward each participant's prior experience and current interests, leading to maximal career development and research independence.
Specific Aim 2 is to ensure exemplary training and exposure to the field of AD, related disorders, and brain research using a collaborative, interdisciplinary, and systems scientific approach that underscores the importance of translating basic science discoveries to impactful and real-world clinical outcomes.
Specific Aim 3 is to instruct and require adherence to the responsible conduct of research. The program faculty mentors associated with this component span numerous areas of expertise which, together, encompass an interdisciplinary, multifaceted systems approach to AD and aging. The breadth and depth of foci across laboratories allows a dynamic and systematic approach to mentoring, providing tremendous opportunities to personalize the mentee's research exposure based on their own goals and background. Moreover, the collaborative nature of our already established ADCC yields connectedness across program faculty, providing abundant opportunities for training in multiple dimensions and techniques directly applicable to understanding and intervening with AD and aging processes. Of critical importance to training researchers in the field of AD and aging, the Research Education Component builds on the many existing strengths of the ADCC to formalize training and education opportunities in a common geographical location, Arizona.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG019610-21
Application #
9977074
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
21
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Arizona State University-Tempe Campus
Department
Type
DUNS #
943360412
City
Tempe
State
AZ
Country
United States
Zip Code
85287
Caselli, Richard J; Langlais, Blake T; Dueck, Amylou C et al. (2018) Personality Changes During the Transition from Cognitive Health to Mild Cognitive Impairment. J Am Geriatr Soc 66:671-678
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558
Mahady, Laura; Nadeem, Muhammad; Malek-Ahmadi, Michael et al. (2018) Frontal Cortex Epigenetic Dysregulation During the Progression of Alzheimer's Disease. J Alzheimers Dis 62:115-131
Allen, Mariet; Wang, Xue; Burgess, Jeremy D et al. (2018) Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimers Dement 14:352-366
Zbesko, Jacob C; Nguyen, Thuy-Vi V; Yang, Tao et al. (2018) Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol Dis 112:63-78
Liu, Li; Caselli, Richard J (2018) Age stratification corrects bias in estimated hazard of APOE genotype for Alzheimer's disease. Alzheimers Dement (N Y) 4:602-608
Caselli, Richard J; Langlais, Blake T; Dueck, Amylou C et al. (2018) Subjective Cognitive Impairment and the Broad Autism Phenotype. Alzheimer Dis Assoc Disord 32:284-290
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2018) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 32:10-17
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169

Showing the most recent 10 out of 794 publications