The Administrative Core sets the overall direction and supervises day-to-day operations of the University of Kansas Alzheimer's Disease Core Center (KU ADCC). Over the past six years investigators at KU have developed an ADCC infrastructure that meets the needs of a diverse array of AD investigators. The administrative core will use this infrastructure to run a highly integrated, thematically organized ADCC that, in addition to supporting multiple lines of AD investigation, also facilitates the study of brain and peripheral tissue energy metabolism in AD and aging. Another key role of the Administrative Core is to expand AD research in the Kansas City metro area, which it will, do by (1) offering a robust pilot project program;(2) training new AD investigators;(3) helping local investigators generate feasibility data for grant applications;(4) providing infrastructure that encourages established investigators with AD-relevant research programs to conduct AD research;and (5) recruiting new AD investigators to the University of Kansas.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG035982-03
Application #
8501212
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$210,171
Indirect Cost
$70,058
Name
University of Kansas
Department
Type
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Burns, Nicole C; Watts, Amber; Perales, Jaime et al. (2018) The Impact of Creative Arts in Alzheimer's Disease and Dementia Public Health Education. J Alzheimers Dis 63:457-463
Williams, Kristine; Blyler, Diane; Vidoni, Eric D et al. (2018) A randomized trial using telehealth technology to link caregivers with dementia care experts for in-home caregiving support: FamTechCare protocol. Res Nurs Health 41:219-227
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Cirstea, Carmen M; Lee, Phil; Craciunas, Sorin C et al. (2018) Pre-therapy Neural State of Bilateral Motor and Premotor Cortices Predicts Therapy Gain After Subcortical Stroke: A Pilot Study. Am J Phys Med Rehabil 97:23-33
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Morris, Jill K; Piccolo, Brian D; Shankar, Kartik et al. (2018) The serum metabolomics signature of type 2 diabetes is obscured in Alzheimer's disease. Am J Physiol Endocrinol Metab 314:E584-E596

Showing the most recent 10 out of 333 publications