While in vitro models can provide insight into many aspects of viral infection, in vivo models are critical to the understanding of the pathogenesis and treatment of viral diseases. The recent development and use of animal models that display pathology following infection with human immunodeficiency virus type 1 (HIV-1) has significantly expanded our knowledge of the mechanisms associated with viral pathogenesis and provided an impetus towards the development of therapeutic approaches. The development of humanized mouse models has provided novel model systems with which to study the human immune system and the effects of HIV infection on human cells and tissues. These models involve transplantation of various types of human tissues into mice who possess one or more of several types of immune defects. The human tissue can then engraft, grow and develop in a similar fashion as it would in humans, allowing the study of this tissue in a living system. The human tissue used in these studies is capable of a high degree of manipulation and experimentation in the mouse and the human cells, versus the mouse cells, are further susceptible to infection with HIV. This provides a powerful model to examine human bloods cell development, to study the effects of HIV infection on human cells, and ways to protect the human immune system from HIV. The generation of these humanized mice is a highly specialized procedure, due to the requirement for immunodeficient mouse strains, human hematopoietic tissue, infectious material, specialized facilities, and the necessary skill and knowledge to perform experiments in this system. The CFAR supported Humanized Mouse Core is designed to assist AIDS-related investigators at UCLA with their research by providing all of the resources and the environments necessary to support the use of state-of-the art humanized mouse technologies. This facility will support the use of humanized mice for AIDS-related research under both Biosafety Level 2 and Biosafety Level 2+ conditions. This facility will also provide consultation on the use of humanized mouse models, as well as construct various humanized animals for distribution to Core users. Thus, the overall goal of this Core laboratory is to provide the infrastructure, materials, animals, technical expertise and support that will facilitate the use of humanized immunodeficient mice in AIDS-related studies.

Public Health Relevance

The overall relevance of the UCLA CFAR Humanized Mouse Core Laboratory is in the ability to provide state-of-the-art resources, expertise, services, and infrastructure involved in AIDS-related humanized mouse-based experiments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Center Core Grants (P30)
Project #
3P30AI028697-28S1
Application #
9646988
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Namkung, Ann S
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
28
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Seang, Sophie; Kelesidis, Theodoros; Huynh, Diana et al. (2018) Low Levels of Endothelial Progenitor Cells and Their Association with Systemic Inflammation and Monocyte Activation in Older HIV-Infected Men. AIDS Res Hum Retroviruses 34:39-45
Kojima, Noah; Klausner, Jeffrey D (2018) Fight Fire With Fire: Innovations to Address Syphilis Among Men Who Have Sex With Men. Sex Transm Dis 45:e85-e86
Black, David S; Cole, Steve W; Christodoulou, Georgia et al. (2018) Genomic mechanisms of fatigue in survivors of colorectal cancer. Cancer 124:2637-2644
Ziyad, Safiyyah; Riordan, Jesse D; Cavanaugh, Ann M et al. (2018) A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Rep 22:1211-1224
Walser, Tonya C; Jing, Zhe; Tran, Linh M et al. (2018) Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Res 78:1986-1999
Fulcher, Jennifer A; Shoptaw, Steven; Makgoeng, Solomon B et al. (2018) Brief Report: Recent Methamphetamine Use Is Associated With Increased Rectal Mucosal Inflammatory Cytokines, Regardless of HIV-1 Serostatus. J Acquir Immune Defic Syndr 78:119-123
Chua, Bernadette Anne; Ngo, Jamie Ann; Situ, Kathy et al. (2018) Protein S and Gas6 induce efferocytosis of HIV-1-infected cells. Virology 515:176-190
Kojima, Noah; Klausner, Jeffrey D (2018) Improving management of sexually transmitted infections in those who use pre-exposure prophylaxis for human immunodeficiency virus infection. AIDS 32:272-275
Khamaikawin, Wannisa; Shimizu, Saki; Kamata, Masakazu et al. (2018) Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1. Mol Ther Methods Clin Dev 9:23-32
Allyn, P R; O'Malley, S M; Ferguson, J et al. (2018) Attitudes and potential barriers towards hepatitis C treatment in patients with and without HIV coinfection. Int J STD AIDS 29:334-340

Showing the most recent 10 out of 942 publications