Calcium is a key regulator in the normal differentiation of epidermal keratinocytes. The calcium signal is transduced via calcium-binding proteins. The S100 family of calcium-binding proteins are strongly implicated in tissue-specific mediation of the calcium signal. Given that calcium is an important regulator of differentiation and that keratinocytes synthesize several S100 proteins, aberrant differentiation of keratinocytes may, in part, be due to altered expression of this important class of calcium-binding proteins. In support of this idea, psoriatic keratinocytes display an altered expression of this important expression with S100A8, S100A9 and S100A7 being upregulated. In this proposal, the role of one of these proteins, S100A7, or psoriasin, in psoriasis will be examined. S100A7 has a limited tissue distribution, being present in fetal skin, ear, and tongue. This S100 protein is not synthesized in normal human interfollicular skin, however it is highly expressed in psoriatic lesional plaques. The mechanism by which S100A7 influences abnormal keratinocyte differentiation is not known. In general, S100 proteins mediate calcium signal through a calcium-dependent conformational change. The calcium-activated S100 protein binds to, and modifies the activity of, specific target proteins. While many targets of S100 proteins have been identified, the target protein(s) of S100A7 is not known. In addition, some of the S100 proteins are post-translationally modified, which potentially affects their physiological function. For example, S100A11 and S100A10 are covalently cross-linked by epidermal transglutaminases (TGs) in vivo. Based on the shared sequence and structural homology within the S100 protein family, it is likely that S100A7 is similarly modified by TG. It is suspected that this modification could prove to be a critical step in regulation of differentiation since it links together calcium (a key regulator of the process), S100 protein (a component of the transduction pathway) and TG (the enzyme responsible for the formation of the cornified envelope- a terminal differentiation product). The overall goals of this study are to (i) characterize, in vivo and in vitro, the ability of TGs to covalently modify S100A7 and (ii) to identify the target protein(s) of S100A7. In preparation for these studies, the coding region of S100A7 has been cloned into a prokaryotic expression vector. The antibody elicited against rhS100A7, however, cross-reacts with other S100 proteins.
In specific aim 1 a antibody directed against the V8 protease released carboxyl-terminal peptide of S100A7 will be produced. This peptide is from an area of divergence within the S100 family.
In specific aim 2 the ability of TGs to cross-link S100A7 in vitro and in vivo will be investigated. rhS100A7 will be incubated in vitro with TG and the products analyzed by polyacrylamide gel. Specific sites of cross-link formation will be identified after trypsin digestion of S100A7, peptide purification and sequence analysis. Keratinocyte extracts, from cell culture and from normal and psoriatic epidermis, will be analyzed by western blot to determine if S100A7 is modified in vivo by TG. The goal of Specific Aim 4 is to identify S100A7 target protein(s). This fundamentally important question will be answered using ligand blots, co-immunoprecipitation assays, affinity chromatography and protein microsequencing.

Project Start
1998-03-01
Project End
2001-02-28
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
10
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Das, Lopa M; Binko, Amy M; Traylor, Zachary P et al. (2018) Defining the timing of 25(OH)D rescue following nitrogen mustard exposure. Cutan Ocul Toxicol 37:127-132
Griffith, Alexis D; Zaidi, Asifa K; Pietro, Ashley et al. (2018) A requirement for slc15a4 in imiquimod-induced systemic inflammation and psoriasiform inflammation in mice. Sci Rep 8:14451
Zaidi, Asifa K; Spaunhurst, Katrina; Sprockett, Daniel et al. (2018) Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol 27:295-298
Bhaskaran, Natarajan; Liu, Zhihui; Saravanamuthu, Senthil S et al. (2018) Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity. Front Immunol 9:184
Mukherjee, Pranab K; Chandra, Jyotsna; Retuerto, Mauricio et al. (2018) Effect of alcohol-based hand rub on hand microbiome and hand skin health in hospitalized adult stem cell transplant patients: A pilot study. J Am Acad Dermatol 78:1218-1221.e5
Swindell, William R; Sarkar, Mrinal K; Liang, Yun et al. (2017) RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Sci Rep 7:18045
Mullin, Nathaniel K; Mallipeddi, Nikhil V; Hamburg-Shields, Emily et al. (2017) Wnt/?-catenin Signaling Pathway Regulates Specific lncRNAs That Impact Dermal Fibroblasts and Skin Fibrosis. Front Genet 8:183
Arbiser, Jack L; Nowak, Ron; Michaels, Kellie et al. (2017) Evidence for biochemical barrier restoration: Topical solenopsin analogs improve inflammation and acanthosis in the KC-Tie2 mouse model of psoriasis. Sci Rep 7:11198
Larkin, Emily; Hager, Christopher; Chandra, Jyotsna et al. (2017) The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation. Antimicrob Agents Chemother 61:
Hutnick, Melanie A; Ahsanuddin, Sayeeda; Guan, Linna et al. (2017) PEGylated Dendrimers as Drug Delivery Vehicles for the Photosensitizer Silicon Phthalocyanine Pc 4 for Candidal Infections. Biomacromolecules 18:379-385

Showing the most recent 10 out of 403 publications