The primary objective of the tissue analysis core is to enhance the versatility and productivity of both new P&F investigators and established skin investigators by facilitating access to techniques directed at the microscopic analysis of skin samples. The establishment of a large, centralized bank of dermatopathologic and wound healing samples will prove to be an invaluable resource for all who conduct skin-related projects. in addition to the routine sectioning and staining of skin samples, this core laboratory will provide access to immunohistochemistry, quantitative morphometric analysis, ultrastructural analysis, and matrix protein analysis. This core will implement the introduction of new techniques, probes and antisera as they appear in the literature. The personnel (director and research assistants) will supply teaching assistance with in situ hybridization techniques for all P&F projects and for the funded SDRC investigators. As protocols for specific probes are established, these reagents and their specialties will be made available to facilitate experiments and to foster cooperative interactions.

Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Russell, Shirley B; Smith, Joan C; Huang, Minjun et al. (2015) Pleiotropic Effects of Immune Responses Explain Variation in the Prevalence of Fibroproliferative Diseases. PLoS Genet 11:e1005568
Velez Edwards, Digna R; Tsosie, Krystal S; Williams, Scott M et al. (2014) Admixture mapping identifies a locus at 15q21.2-22.3 associated with keloid formation in African Americans. Hum Genet 133:1513-23
Duncan, F Jason; Silva, Kathleen A; Johnson, Charles J et al. (2013) Endogenous retinoids in the pathogenesis of alopecia areata. J Invest Dermatol 133:334-43
Takahashi, Keiko; Mernaugh, Raymond L; Friedman, David B et al. (2012) Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proc Natl Acad Sci U S A 109:1985-90
Jandova, Jana; Eshaghian, Alex; Shi, Mingjian et al. (2012) Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry. J Invest Dermatol 132:421-8
Jandova, Jana; Shi, Mingjian; Norman, Kimberly G et al. (2012) Somatic alterations in mitochondrial DNA produce changes in cell growth and metabolism supporting a tumorigenic phenotype. Biochim Biophys Acta 1822:293-300
Sundberg, J P; Taylor, D; Lorch, G et al. (2011) Primary follicular dystrophy with scarring dermatitis in C57BL/6 mouse substrains resembles central centrifugal cicatricial alopecia in humans. Vet Pathol 48:513-24
Harries, M J; Sun, J; Paus, R et al. (2010) Management of alopecia areata. BMJ 341:c3671
Yang, Jinming; Splittgerber, Ryan; Yull, Fiona E et al. (2010) Conditional ablation of Ikkb inhibits melanoma tumor development in mice. J Clin Invest 120:2563-74
Russell, Shirley B; Russell, James D; Trupin, Kathryn M et al. (2010) Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol 130:2489-96

Showing the most recent 10 out of 139 publications