The Human Bone Cell Production Core of the UAB-Core Center for Musculoskeletal Disorders (UAB-CCMD) will provide human osteoblast progenitor cells and human osteoclast-like cells to UAB-CCMD investigators. This unique Core Facility as a proven track record of success at UAB. Through the UAB-CCD, ongoing support will allow expansion of the program with services provided at no cost to the UAB- CCD pilot project investigators and markedly reduced costs to other UAB-CCMD investigators. The centralization of the production of human bone cells provides efficacy, quality and reflects a commitment of the UAB-CCMD to utilize human derived cells in basic bone research whenever possible. In addition to human osteoblasts and osteoclasts, specialized molecular biology techniques, including tetracycline-regulated stable gene expression and adenovirus-mediated gene expression techniques will be organized in the Core Facility, providing these services in a standardized and coordinated manner to reduce systematic error, and improve efficiency. The core facility will reduce developmental and production costs, and improve the overall quality associated with human bone cells preparation and related stable gene expression. This proposal will support the following activities: 1. PREPARATION AND PURIFICATION STRO-1 POSITIVE OSTEOBLASTS FROM HUMAN BONE; 2. PREPARATION OF HUMAN OSTEOCLASTS; 3. STABLE EXPRESSION OF SPECIFIC GENES IN BONE CELLS: a. Adenovirus expression-vector construction b. Tetracycline-regulated gene expression.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
United States
Zip Code
Chen, Wei; Zhu, Guochun; Tang, Jun et al. (2018) C/ebp? controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 244:271-282
Chen, Wei; Zhu, Guochun; Jules, Joel et al. (2018) Monocyte-Specific Knockout of C/ebp? Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebp? in Osteoclast Differentiation and Function. J Bone Miner Res 33:691-703
Jules, Joel; Chen, Wei; Feng, Xu et al. (2018) C/EBP? transcription factor is regulated by the RANK cytoplasmic 535IVVY538 motif and stimulates osteoclastogenesis more strongly than c-Fos. J Biol Chem 293:1480-1492
Cai, Xiaofeng; Xing, Junjie; Long, Courtney L et al. (2017) DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis. J Bone Miner Res 32:2207-2218
Wu, Mengrui; Wang, Yiping; Shao, Jian-Zhong et al. (2017) Cbf? governs osteoblast-adipocyte lineage commitment through enhancing ?-catenin signaling and suppressing adipogenesis gene expression. Proc Natl Acad Sci U S A 114:10119-10124
Jules, Joel; Chen, Wei; Feng, Xu et al. (2016) CCAAT/Enhancer-binding Protein ? (C/EBP?) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 291:16390-403
Levy, Seth; Feduska, Joseph M; Sawant, Anandi et al. (2016) Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone 93:113-124
Higgs, Jerome T; Jarboe, John S; Lee, Joo Hyoung et al. (2015) Variants of Osteoprotegerin Lacking TRAIL Binding for Therapeutic Bone Remodeling in Osteolytic Malignancies. Mol Cancer Res 13:819-27
Li, Sheng; Hao, Liang; Wang, Lin et al. (2015) Targeting Atp6v1c1 Prevents Inflammation and Bone Erosion Caused by Periodontitis and Reveals Its Critical Function in Osteoimmunology. PLoS One 10:e0134903
Deshane, Jessy S; Redden, David T; Zeng, Meiqin et al. (2015) Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease. J Allergy Clin Immunol 135:413-424.e15

Showing the most recent 10 out of 138 publications