The overall goal of the diAB-RDCC is to stimulate collaborative and innovative interdisciplinary research in order to enhance our fundamental understanding of disease mechanisms and their application to human rheumatic diseases. Through this understanding, the UAB-RDCC's goal is to improve the diagnosis and treatment of patients with arthritis and musculoskeletal diseases. The strategy of the UAB-RDCC is to draw on the strengths of the UAB research community, including the Hudson Alpha Institute of Biotechnology and Southern Research, to provide essential scientific tools and technologies, to enlist new investigators, to foster the sharing of knowledge and to nuture collaborations among translational and basic science investigators in the fight against rheumatic diseases through the creation and support of a vibrant scientific culture of discovery and innovation. Accordingly, our specific aims are 1) to facilitate rheumatic disease research through Research Core facilities, which provide scientifically rigorous, state-of-the-art techniques necessary for improved understanding of disease pathogenesis and the development of new treatments;2) to support outstanding Pilot &Feasibility research projects drawing on the unique strengths of the RDCC research base and using innovative tools and approaches in biomedical science;and 3) to provide career development and career enrichment activities to enhance both the mentorship of talented investigators as independent researchers and the continuing education of all of our investigators. To achieve its specific aims, the UAB-RDCC has worked continuously with its Research Core facilities to develop technical capacities, to assess user needs and to provide a variety of formats for outreach and enrichment, including our IDEAs program (individualized design and experimental analyses sessions). The RDCC leadership team has worked with the School of Medicine, the Provost, the Vice President for Research and the Faculty Practice (HSF-GEF) to support the continued development of available tools and technologies for rheumatic diseases research, and through these efforts the UAB-RDCC provides the opportunity for our investigators to commit their programs to the mission of NIAMS.

Public Health Relevance

The UAB-RDCC is committed to providing both the critical tools and technologies and the vibrant scientific environment to enhance discovery and innovation in rheumatic diseases research in order to improve the diagnosis and treatment of patients with arthritis and musculoskeletal diseases. To achieve these goals, the UAB-RDCC provides core facilities and supports both pilot research programs and a vigorous outreach and enrichment program of seminars, symposia, workshops and individualized IDEA sessions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR048311-12
Application #
8536205
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Program Officer
Mao, Su-Yau
Project Start
2001-09-28
Project End
2017-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
12
Fiscal Year
2013
Total Cost
$560,493
Indirect Cost
$176,840
Name
University of Alabama Birmingham
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Yang, Zhengrong; Hildebrandt, Ellen; Jiang, Fan et al. (2018) Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. Biochim Biophys Acta Biomembr 1860:1193-1204
Smith, Samuel R; Schaaf, Kaitlyn; Rajabalee, Nusrah et al. (2018) The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci Rep 8:902
Chen, Wei; Zhu, Guochun; Jules, Joel et al. (2018) Monocyte-Specific Knockout of C/ebp? Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebp? in Osteoclast Differentiation and Function. J Bone Miner Res 33:691-703
Wang, Yong; Schafer, Cara C; Hough, Kenneth P et al. (2018) Myeloid-Derived Suppressor Cells Impair B Cell Responses in Lung Cancer through IL-7 and STAT5. J Immunol 201:278-295
Jones, Robert B; Dorsett, Kaitlyn A; Hjelmeland, Anita B et al. (2018) The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1? signaling. J Biol Chem 293:5659-5667
Bandari, Shyam K; Purushothaman, Anurag; Ramani, Vishnu C et al. (2018) Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 65:104-118
Jo, SeongHo; Chen, Junqin; Xu, Guanlan et al. (2018) miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function. Diabetes 67:256-264
Stafman, Laura L; Williams, Adele P; Garner, Evan F et al. (2018) Targeting PIM Kinases Affects Maintenance of CD133 Tumor Cell Population in Hepatoblastoma. Transl Oncol 12:200-208
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2018) Cutting Edge: Intracellular IFN-? and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. J Immunol 201:2203-2208
Yang, Zhenhua; Shah, Kushani; Busby, Theodore et al. (2018) Hijacking a key chromatin modulator creates epigenetic vulnerability for MYC-driven cancer. J Clin Invest 128:3605-3618

Showing the most recent 10 out of 340 publications