The overall goal of the Analytical Genomics and Transgenics Core (AGTC) is to enhance the productivity of the UAB Rheumatic Disease Core Center (RDCC) researchers, and provide state-of-the-art services to facilitate the development and use of appropriate genetic animal models. During the two previous funding cycles, this Core (formerly called the """"""""Gene Targeting Core Facility"""""""" (GTCF)) served to support expertise in embryonic stem (ES) cell services as part of the UAB Transgenic Mouse Facility. In response to user needs, the Core has expanded services to more specifically assist with the creation of mouse models relevant to rheumatic disease beyond just ES services to 1) generate novel genetically engineered models of broad utility to multiple RDCC investigators, and 2) establish educational and outreach programs to forge active collaborations between the Core and RDCC investigators, especially in areas related to genomics. Formal educational resources for learning modern and emerging genetic and genomic technologies via workshops, seminars, lectures, and symposia hosted at UAB and our partner institution, Hudson Alpha Institute for Biotechnology (HAIB) are an extension of the core's evolution. The overarching objective and downstream output of the Core remains the same;to produce mouse models of human disease and of human genetic variants contributing to disease in order to provide a mammalian system to study the pathophysiology of rheumatic disease, as well as to test the efficacy of potential treatment interventions. To this end, the Analytical Genomics &Transgenic Core has the following specific aims:
AIM 1. SERVICE: To provide expert services to generate and analyze genetic/genomic data, and to develop translational animal models relating to the mission of the RDCC.
AIM 2. OUTREACH AND EDUCATION: To provide enrichment programs for RDCC investigators.
AIM 3. DEVELOPMENT: To assess RDCC investigator needs and develop new platfonns and technologies to address those needs.

Public Health Relevance

Genetically modified mouse models are critical to the understanding ofthe role of genes, identified genetic variants in humans producing disease, and ultimately creating translational models for developing novel therapeutics. The Analytical Genomics and Transgenics Core (AGTC) has been established to address these needs as they relate to the study of rheumatic disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR048311-12
Application #
8536211
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
12
Fiscal Year
2013
Total Cost
$194,415
Indirect Cost
$59,674
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Shin, Boyoung; Kress, Robert L; Kramer, Philip A et al. (2018) Effector CD4 T cells with progenitor potential mediate chronic intestinal inflammation. J Exp Med 215:1803-1812
Gibson, Sara A; Yang, Wei; Yan, Zhaoqi et al. (2018) CK2 Controls Th17 and Regulatory T Cell Differentiation Through Inhibition of FoxO1. J Immunol 201:383-392
Stafman, Laura L; Mruthyunjayappa, Smitha; Waters, Alicia M et al. (2018) Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget 9:22665-22679
Jimenez, Rachel V; Wright, Tyler T; Jones, Nicholas R et al. (2018) C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance. Front Immunol 9:372
Holdbrooks, Andrew T; Britain, Colleen M; Bellis, Susan L (2018) ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem 293:1610-1622
Engle, Staci E; Antonellis, Patrick J; Whitehouse, Logan S et al. (2018) A CreER mouse to study melanin concentrating hormone signaling in the developing brain. Genesis 56:e23217
Yang, Zhengrong; Hildebrandt, Ellen; Jiang, Fan et al. (2018) Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. Biochim Biophys Acta Biomembr 1860:1193-1204
Smith, Samuel R; Schaaf, Kaitlyn; Rajabalee, Nusrah et al. (2018) The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci Rep 8:902
Chen, Wei; Zhu, Guochun; Jules, Joel et al. (2018) Monocyte-Specific Knockout of C/ebp? Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebp? in Osteoclast Differentiation and Function. J Bone Miner Res 33:691-703
Wang, Yong; Schafer, Cara C; Hough, Kenneth P et al. (2018) Myeloid-Derived Suppressor Cells Impair B Cell Responses in Lung Cancer through IL-7 and STAT5. J Immunol 201:278-295

Showing the most recent 10 out of 340 publications