Tissue structure and strength are the most relevant properties when assessing animal models related to musculoskeletal injury, disease and repair. Whether the treatment effects are created by genetic manipulation, metabolic challenge, simulated injury, surgical repair or other intervention, the net effects must be judged based on whether they have resulted in more or less tissue, whether that tissue has normal morphology, and whether the tissue or skeletal structure has increased or decreased mechanical properties. We have the necessary equipment and the demonstrated user expertise to assess the structural and mechanical properties of a range of musculoskeletal tissue and structures derived from animal models. There have been productive collaborations between investigators in the Research Base and the personnel of this Core, but these have been limited in number by the lack of a mechanism to support the acquisition and analysis of data by expert users and the training of non-expert users. The objective of this Musculoskeletal Structure and Strength Core (Core B) is to provide a mechanism to increase access to existing resources for x-ray based densitometry and imaging, and mechanical testing, and to thereby enable new interactions and enhance existing interactions between musculoskeletal researchers at Washington University. We will maintain protocols and equipment to promote quality control, provide technical support and training, and perform the following services on musculoskeletal structures and tissues from animal models (mouse to canine) generated by investigators in the Core Center Research Base.
Aim 1 : X-ray based imaging; available modalities include radiography, dual-energy x-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) and micro-computed tomography (microCT). Each of these is available for ex vivo or in vivo imaging.
Aim 2 : Mechanical testing;available modalities include whole-bone bending and compression, trabecular indentation, tensile testing of demineralized bone, tendon and tendon-bone insertion site tensile testing;muscle force measurement. By offering these Core services we will increase research productivity of established musculoskeletal investigators on our campus and facilitate non-musculoskeletal investigators wishing to bring new perspectives to studies in musculoskeletal biology and medicine.

Public Health Relevance

Musculoskeletal disorders such as osteoarthritis, osteoporosis and muscular dystrophy are a main cause of pain and suffering leading to diminished quality and lost time from work. Our research uses animal models to understand the biological factors underlying musculoskeletal disorders. We use imaging and mechanical testing techniques to assess the structure and strength of bone, tendon and muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
1P30AR057235-01
Application #
7680839
Study Section
Special Emphasis Panel (ZAR1-CHW-G (M1))
Project Start
Project End
Budget Start
2009-05-11
Budget End
2010-03-31
Support Year
1
Fiscal Year
2009
Total Cost
$173,894
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Sun, David; Brodt, Michael D; Zannit, Heather M et al. (2018) Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration. J Orthop Res 36:682-691
Turecamo, S E; Walji, T A; Broekelmann, T J et al. (2018) Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biol 67:1-14
Meyer, Gretchen A (2018) Evidence of induced muscle regeneration persists for years in the mouse. Muscle Nerve 58:858-862
Wang, Chun; Hockerman, Susan; Jacobsen, E Jon et al. (2018) Selective inhibition of the p38? MAPK-MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med 215:1315-1325
Chinzei, N; Brophy, R H; Duan, X et al. (2018) Molecular influence of anterior cruciate ligament tear remnants on chondrocytes: a biologic connection between injury and osteoarthritis. Osteoarthritis Cartilage 26:588-599
Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J et al. (2018) Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. J Orthop Res 36:484-497
Chinzei, Nobuaki; Rai, Muhammad Farooq; Hashimoto, Shingo et al. (2018) Evidence for Genetic Contribution to Variation in Post-Traumatic Osteoarthritis in Mice. Arthritis Rheumatol :
Rai, Muhammad Farooq; Pham, Christine Tn (2018) Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 40:67-73
Gaio, Natalie; Martino, Alice; Toth, Zacharie et al. (2018) Masquelet technique: The effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect model. J Biomech 72:53-62
McBride-Gagyi, Sarah; Toth, Zacharie; Kim, Daniel et al. (2018) Altering spacer material affects bone regeneration in the Masquelet technique in a rat femoral defect. J Orthop Res :

Showing the most recent 10 out of 335 publications