The Imaging Core will provide both fluorescence light microscopy and electron microscopy resources to Center Investigators to enable evaluation of muscle morphology and structural organization, and to localize specific molecular components in the sarcomeres, cytoskeleton, subcellular organelles and membranes. The broad long-term objective of this Core is to provide quantitative structural information that will be an essential link in the proposed Center's long-term goal to achieve a comprehensive understanding of multi-scale structure-function relationships in skeletal muscle. The Imaging Core will interface with the Phenotyping Core and the High-throughput Cell Analysis Core by assisting investigators in fluorescence light microscopy and transmission electron microscopy analyses of skeletal muscle tissues and cells isolated from wild-type and transgenic mice, or from healthy and diseased human muscles. The Core will provide Center investigators with training and assistance in the complex imaging technologies of Transmission Electron Microscopy and Confocal Laser Scanning Fluorescence Microscopy on fixed specimens, Confocal Spinning Disc and Wide-Field Fluorescence Microscopy of molecular dynamics in living cells, and Single-Molecule Fluorescence imaging using Total Internal Reflection Fluorescence (TIRF) Microscopy. The Core will provide training and assistance with routine aspects of sample preparation for microscopy, and training and access to microscopes in The Scripps Research Institute (TSRI) Microscopy Facility, and in the Center for Integrated Molecular Biosciences (CIMBio) Fluorescence Microscopy Suite at TSRI. The Core will also assist investigators in application of image analysis software to their experimental problems and in quantitative interpretation of fluorescent image data.
The Specific Aims are: 1) To provide training and technical assistance in skeletal muscle cell and tissue fixation and processing in preparation for fluorescence light microscopy and/or transmission electron microscopy;2) To provide training and access to fluorescence and electron microscopes at TSRI;3) To provide training and assistance in quantitative 2D and 3D image analysis software packages (Metamorph, Volocity Suite), and custom computational approaches to measure myofibril structure (Distributed Deconvolution);4) To upgrade the TIRF microscope to perform superresolution Photoactivation Localization Microscopy (PALM) and Stochastic Optical Resconstruction Microscopy (STORM), enabling nano-scale single-molecule fluorescence imaging in muscle cells and isolated myofibrils.

Public Health Relevance

Muscle contraction relies on movements of repeating structures called sarcomeres, which are attached to the muscle membranes and tendons to generate force. Muscle diseases, such as myopathies and dystrophies exhibit disruptions in sarcomeres and membrane attachments, as well as alterations in muscle fiber structure due to degeneration and regeneration. Microscopic visualization of muscle structures will explain altered function, provide insight into causes of human myopathies and lead to better treatments.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Madaro, Luca; Passafaro, Magda; Sala, David et al. (2018) Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 20:917-927
Diez-Cuñado, Marta; Wei, Ke; Bushway, Paul J et al. (2018) miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Rep 23:2168-2174
Liu, Eva S; Martins, Janaina S; Zhang, Wanlin et al. (2018) Molecular analysis of enthesopathy in a mouse model of hypophosphatemic rickets. Development 145:
Sartorelli, Vittorio; Puri, Pier Lorenzo (2018) Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 71:375-388
Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco et al. (2018) HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 8:3448
Gibbons, Michael C; Singh, Anshuman; Engler, Adam J et al. (2018) The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res 36:546-556
Gokhin, David S; Fowler, Velia M (2017) Software-based measurement of thin filament lengths: an open-source GUI for Distributed Deconvolution analysis of fluorescence images. J Microsc 265:11-20
Jordan, Sabine D; Kriebs, Anna; Vaughan, Megan et al. (2017) CRY1/2 Selectively Repress PPAR? and Limit Exercise Capacity. Cell Metab 26:243-255.e6
Roberts, Thomas C; Etxaniz, Usue; Dall'Agnese, Alessandra et al. (2017) BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Sci Rep 7:6153
Latella, Lucia; Dall'Agnese, Alessandra; Boscolo, Francesca Sesillo et al. (2017) DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes Dev 31:648-659

Showing the most recent 10 out of 86 publications