The Monoclonal Anfibody Core provides expert consultafion on antibody development to invesfigators and supports all aspects of anfibody development, including generation of antigens, immunizations, hybridoma fusions, antibody screening, long-term hybridoma storage and small and large-scale anfibody producfion, as well as purificafion and labeling of anfibodies. The Core provides quality antibody reagents and technologies at a reasonable fee so that DF/HCC members can further their research objectives and facilitate their goal to invesfigate, diagnose and treat cancer. This facility was first approved as an Established Shared Resource at the fime ofthe last competitive renewal.

Public Health Relevance

The mission of the Core is to generate novel monoclonal and polyclonal antibodies specific for antigens of interest to Cancer Center investigators. Given the diverse research needs of DF/HCC members, the Core strives to respond to a wide variety of requests for antibody development. Antibodies can be developed for basic and translational research, including the detection of biomarkers indicative of disease status, as well as functional antibodies for therapeutic purposes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
4P30CA006516-51
Application #
8975641
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
2017-11-30
Budget Start
2015-12-01
Budget End
2016-11-30
Support Year
51
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
Mohr, Stephanie E; Rudd, Kirstin; Hu, Yanhui et al. (2018) Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells. G3 (Bethesda) 8:631-641
Odiaka, Emeka; Lounsbury, David W; Jalloh, Mohamed et al. (2018) Effective Project Management of a Pan-African Cancer Research Network: Men of African Descent and Carcinoma of the Prostate (MADCaP). J Glob Oncol :1-12
Mills, Evanna L; Pierce, Kerry A; Jedrychowski, Mark P et al. (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560:102-106
Oser, Matthew G; Fonseca, Raquel; Chakraborty, Abhishek A et al. (2018) Cells Lacking the RB1 Tumor Suppressor Gene are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov :
Choudhury, Atish D; Gray, Kathryn P; Supko, Jeffrey G et al. (2018) A dose finding clinical trial of cabozantinib (XL184) administered in combination with abiraterone acetate in metastatic castration-resistant prostate cancer. Prostate :
Watson, Noreen L; Mull, Kristin E; Heffner, Jaimee L et al. (2018) Participant Recruitment and Retention in Remote eHealth Intervention Trials: Methods and Lessons Learned From a Large Randomized Controlled Trial of Two Web-Based Smoking Interventions. J Med Internet Res 20:e10351
Pednekar, M S; Nagler, E M; Gupta, P C et al. (2018) Scaling up a tobacco control intervention in low resource settings: a case example for school teachers in India. Health Educ Res 33:218-231
Braun, Danielle; Yang, Jiabei; Griffin, Molly et al. (2018) A Clinical Decision Support Tool to Predict Cancer Risk for Commonly Tested Cancer-Related Germline Mutations. J Genet Couns 27:1187-1199
Santana-Codina, Naiara; Roeth, Anjali A; Zhang, Yi et al. (2018) Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 9:4945
Cox, Andrew G; Tsomides, Allison; Yimlamai, Dean et al. (2018) Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J 37:

Showing the most recent 10 out of 411 publications