The overall mission of the Cancer Genetics Program is to expand our understanding of the genetic basis of cancer development and to use this knowledge to improve the care of cancer patients. To advance this mission, the Program has assembled a large and vibrant membership, including investigators with a broad range of scientific interests in all major aspects of cancer genetics. Particular areas of focus include: 1) cancer gene discovery and functional characterization (in both human cancers and model organisms), 2) technology development and application (e.g., massively parallel sequencing, emerging genomic technologies, and single cell analyses), 3) computational analysis (e.g., algorithm development, bioinformatics methods, and genome annotation approaches), 4) genetic and molecular studies of cancer progenitor cells, 5) analysis of mechanisms of cancer targeted therapy resistance, 6) clinical cancer genetics, including risk counseling, and 7) delivery of state-of-the-art CLIA-certified testing of both cancer gene panels and of whole exomes for cancer precision medicine. The program has 111 members, representing seven DF/HCC institutions and 14 academic departments. In 2014 peer-reviewed grant funding attributed to the Program was $8.2 million in total costs from the NCI and $25.1 million from other sponsors. During the current funding period, Cancer Genetics Program members published 2,332 cancer-relevant papers. Of these 31% were inter-institutional, 15% were intra- programmatic, and 48% were inter-programmatic collaborations between two or more DF/HCC members. Overall, when counted once, 27% of DF/HCC publications were inter-programmatic collaborations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006516-56
Application #
10062927
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-03-10
Project End
2021-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
56
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Mohr, Stephanie E; Rudd, Kirstin; Hu, Yanhui et al. (2018) Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells. G3 (Bethesda) 8:631-641
Odiaka, Emeka; Lounsbury, David W; Jalloh, Mohamed et al. (2018) Effective Project Management of a Pan-African Cancer Research Network: Men of African Descent and Carcinoma of the Prostate (MADCaP). J Glob Oncol :1-12
Mills, Evanna L; Pierce, Kerry A; Jedrychowski, Mark P et al. (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560:102-106
Oser, Matthew G; Fonseca, Raquel; Chakraborty, Abhishek A et al. (2018) Cells Lacking the RB1 Tumor Suppressor Gene are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov :
Choudhury, Atish D; Gray, Kathryn P; Supko, Jeffrey G et al. (2018) A dose finding clinical trial of cabozantinib (XL184) administered in combination with abiraterone acetate in metastatic castration-resistant prostate cancer. Prostate :
Watson, Noreen L; Mull, Kristin E; Heffner, Jaimee L et al. (2018) Participant Recruitment and Retention in Remote eHealth Intervention Trials: Methods and Lessons Learned From a Large Randomized Controlled Trial of Two Web-Based Smoking Interventions. J Med Internet Res 20:e10351
Pednekar, M S; Nagler, E M; Gupta, P C et al. (2018) Scaling up a tobacco control intervention in low resource settings: a case example for school teachers in India. Health Educ Res 33:218-231
Braun, Danielle; Yang, Jiabei; Griffin, Molly et al. (2018) A Clinical Decision Support Tool to Predict Cancer Risk for Commonly Tested Cancer-Related Germline Mutations. J Genet Couns 27:1187-1199
Santana-Codina, Naiara; Roeth, Anjali A; Zhang, Yi et al. (2018) Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 9:4945
Cox, Andrew G; Tsomides, Allison; Yimlamai, Dean et al. (2018) Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J 37:

Showing the most recent 10 out of 411 publications